Studies in tau and Aβ plaque transgenic mouse models demonstrated that brain-penetrant microtubule (MT)stabilizing compounds, including the 1,2,4-triazolo[1,5-a]pyrimidines, hold promise as candidate treatments for Alzheimer's disease and related neurodegenerative tauopathies. Triazolopyrimidines have already been investigated as anticancer agents; however, the antimitotic activity of these compounds does not always correlate with stabilization of MTs in cells. Indeed, previous studies from our laboratories identified a critical role for the fragment linked at C6 in determining whether triazolopyrimidines promote MT stabilization or, conversely, disrupt MT integrity in cells. To further elucidate the structure−activity relationship (SAR) and to identify potentially improved MT-stabilizing candidates for neurodegenerative disease, a comprehensive set of 68 triazolopyrimidine congeners bearing structural modifications at C6 and/or C7 was designed, synthesized, and evaluated. These studies expand upon prior understanding of triazolopyrimidine SAR and enabled the identification of novel analogues that, relative to the existing lead, exhibit improved physicochemical properties, MT-stabilizing activity, and pharmacokinetics.
Alzheimer’s
disease (AD) is a complex, multifactorial disease in which different
neuropathological mechanisms are likely involved, including those
associated with pathological tau and Aβ species as well as neuroinflammation.
In this context, the development of single multitargeted therapeutics
directed against two or more disease mechanisms could be advantageous.
Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing
activity and structural similarities with known NSAIDs, we conducted
structure–activity relationship studies that led to the identification
of multitargeted prototypes with activities as MT-stabilizing agents
and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX)
pathways. Several examples are brain-penetrant and exhibit balanced
multitargeted in vitro activity in the low μM range. As brain-penetrant
MT-stabilizing agents have proven effective against tau-mediated neurodegeneration
in animal models, and because COX- and 5-LOX-derived eicosanoids are
thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles
provide tools to explore novel multitargeted strategies for AD and
other neurodegenerative diseases.
In vitro whole-organism screens of Trypanosoma brucei with representative examples of brain-penetrant microtubule (MT)-stabilizing agents identified lethal triazolopyrimidines and phenylpyrimidines with sub-micromolar potency. In mammalian cells, these antiproliferative compounds disrupt MT integrity and decrease total tubulin levels. Their parasiticidal potency, combined with their generally favorable pharmacokinetic properties, which include oral bioavailability and brain penetration, suggest that these compounds are potential leads against human African trypanosomiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.