In computed tomography there are different situations where reconstruction has to be performed with limited raw data. In the past few years it has been shown that algorithms which are based on compressed sensing theory are able to handle incomplete datasets quite well. As a cost function these algorithms use the ℓ(1)-norm of the image after it has been transformed by a sparsifying transformation. This yields to an inequality-constrained convex optimization problem. Due to the large size of the optimization problem some heuristic optimization algorithms have been proposed in the past few years. The most popular way is optimizing the raw data and sparsity cost functions separately in an alternating manner. In this paper we will follow this strategy and present a new method to adapt these optimization steps. Compared to existing methods which perform similarly, the proposed method needs no a priori knowledge about the raw data consistency. It is ensured that the algorithm converges to the lowest possible value of the raw data cost function, while holding the sparsity constraint at a low value. This is achieved by transferring the step-size determination of both optimization procedures into the raw data domain, where they are adapted to each other. To evaluate the algorithm, we process measured clinical datasets. To cover a wide field of possible applications, we focus on the problems of angular undersampling, data lost due to metal implants, limited view angle tomography and interior tomography. In all cases the presented method reaches convergence within less than 25 iteration steps, while using a constant set of algorithm control parameters. The image artifacts caused by incomplete raw data are mostly removed without introducing new effects like staircasing. All scenarios are compared to an existing implementation of the ASD-POCS algorithm, which realizes the step-size adaption in a different way. Additional prior information as proposed by the PICCS algorithm can be incorporated easily into the optimization process.
The reconstruction algorithms including at least one iterative step can reduce the 4 CBCT specific artifacts. Nevertheless, the algorithms that use the full data set, at least for initialization, such as MKB and PICCS in the authors' implementation, are only a trade-off and may not fully achieve the optimal temporal resolution. A predictable image quality as seen in conventional reconstruction methods, i.e., without total variation minimization, is a desirable property for reconstruction algorithms. Fast, iterative approaches such as the MKB can therefore be seen as a suitable tradeoff.
Temporal-correlated image reconstruction, also known as 4D CT image reconstruction, is a big challenge in computed tomography. The reasons for incorporating the temporal domain into the reconstruction are motions of the scanned object, which would otherwise lead to motion artifacts. The standard method for 4D CT image reconstruction is extracting single motion phases and reconstructing them separately. These reconstructions can suffer from undersampling artifacts due to the low number of used projections in each phase. There are different iterative methods which try to incorporate some a priori knowledge to compensate for these artifacts. In this paper we want to follow this strategy. The cost function we use is a higher dimensional cost function which accounts for the sparseness of the measured signal in the spatial and temporal directions. This leads to the definition of a higher dimensional total variation. The method is validated using in vivo cardiac micro-CT mouse data. Additionally, we compare the results to phase-correlated reconstructions using the FDK algorithm and a total variation constrained reconstruction, where the total variation term is only defined in the spatial domain. The reconstructed datasets show strong improvements in terms of artifact reduction and low-contrast resolution compared to other methods. Thereby the temporal resolution of the reconstructed signal is not affected.
Purpose: Scattered radiation is one of the major problems facing image quality in flat detector conebeam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.