Heat sealing behavior of mono-polyolefins and paper-based materials is drastically different from conventional multilayer plastic laminates. This paper presents the effect of sealing conditions on Hot-Tack and Cold-Tack for an oriented polypropylene (OPP)-based polyolefin laminate with either polyethylene (PE) or cast polypropylene (CPP) sealing layer and two different barrier paper materials carrying a thin acrylic copolymer sealing layer. The investigations include pressure, temperature, time, jaw pattern, and climate conditions (moisture). It is shown that the monopolyolefins reach comparable Hot-Tack and Cold-Tack ranges compared with the reference polyethylene terephthalate (PET)-aluminum (Al)-PE laminate. The CPP laminate exhibits a narrow sealing window near the range in which shrinkage is observed. While for the polyolefins temperature plays the main role, the sealing of paper materials turned out to be dependent on pressure, time, and moisture content in paper. Due to a rupture through the polymer thin coating, the Cold-Tack is dominated by a delamination of paper and coating. Consequently, the Cold-Tack is drastically lower than with PETAl -PE laminate. Monopolypropylene films exhibit extremely narrow sealing window, which shall be taken into the design consideration of bag formfill-seal (FFS) machines. Polymer coated paper can be potentially used at high-speed FFS; however, special attention shall be paid to moisture content control and filling.
Flexible packaging materials consisting of several layers of very dissimilar materials are currently considered for replacement by multilayer polyolefin films as well as functional flexible paper materials to improve recyclability. Such materials however lead to new challenges in processing on existing packaging machinery. This paper focuses on the sealing process of such materials, especially looking at pillow pouches and the challenges occurring at the junction between cross and fin seals where the total thickness jumps from two to four layers. It is shown that the application of conventional machinery and sealing tools does not lead to a gastight seal within the operational sealing window of such materials. The origin of the permanent failure is the lack of material fraction capable to flow as a viscous melt into the gap at the fin seal. The limited compressibility of the nonmelting materials and their bending stiffness tend to increase the gap. In case of paper, a flexible sealing jaw, equipped with an elastic insert, enables a focused application of pressure at the layer jump of a poorly compressible material. This results in clearly improved gas tightness of all selected materials in the range of the used test methods (leak size 10 μm). The leakage rate of papers was reduced from 3–4 mbar·l/s with rigid tools to 1 mbar·l/s with flexible tools. The leakage of 2 mbar·l/s with OPP/CPP material could be prevented and no leaks were detected. With OPP/PE, leak‐proof results were obtain within reduced temperature at 140°, which is near the level of acceptable seal quality with low shrinkage effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.