Low soybean yields in western Kenya have been attributed to low soil fertility despite much work done on nitrogen (N) and phosphorus (P) nutrition leading to suspicion of other nutrient limitations. To investigate this, a nutrient omission trial was set up in the greenhouse at the University of Eldoret-Kenya to diagnose the nutrients limiting soybean production in Acrisols from Masaba central and Butere sub-Counties, and Ferralsols from Kakamega (Shikhulu and Khwisero sub-locations) and Butula sub-Counties and to assess the effect of liming on soil pH and soybean growth. The experiment was laid out in a completely randomized design with ten treatments viz; positive control (complete), negative control (distilled water), complete with lime, complete with N, minus macronutrients P, potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and with, micro-nutrients boron (B), molybdenum (Mo), manganese (Mn), copper (Cu) and zinc (Zn) omitted. Visual deficiency symptoms observed included interveinal leaf yellowing in Mg omission and N addition and dark green leaves in P omission. Nutrients omission resulted in their significantly low concentration in plant tissues than the complete treatment. Significantly (P≤ 0.05) lower shoot dry weights (SDWs) than the complete treatment were obtained in different treatments; omission of K and Mg in Masaba and Shikhulu, Mg in Khwisero, K in Butere and, P, Mg and K in Butula. Nitrogen significantly improved SDWs in soils from Kakamega and Butula. Liming significantly raised soil pH by 9, 13 and 11% from 4.65, 4.91 and 4.99 in soils from Masaba, Butere and Butula respectively and soybean SDWs in soils from Butere. The results show that, poor soybean growth was due to K, Mg and P limitation and low pH in some soils. The results also signify necessity of application of small quantities of N for initial soybean use.
Leguminous plants are known to require phosphorus fertilizers and inoculation with nitrogen fixing rhizobia for optimum yield but other nutrients may also be lacking. In this study, the most limiting nutrients for legume growth were determined in soils where the crops had not responded to P and rhizobial inoculation in field trials, using the double pot technique. Soils were collected from 17 farmers' fields in West Kenya, Northern Nigeria, Eastern and Southern Rwanda, South-west and North-west Sierra Leone. Plant growth and mean biomass were measured on soils to which a full nutrient solution, containing phosphorus (P), potassium (K), magnesium (Mg), sulfur (S) and micronutrients (MN) were added, and which were compared to a control (no nutrient added), and individual omissions of each nutrient. The relationship between soil properties and nutrient deficiencies was explored. Nutrient limitations were found to differ between soils, both within and across countries. Generally, each soil was potentially deficient in at least one nutrient, with K, P, Mg, MN and S emerging as most limiting in 88, 65, 59, 18, and 12% of tested soils, respectively. While K was the most limiting nutrient in soils from Kenya and Rwanda, P was most limiting in soils from Nigeria. P and K were equally limiting in soils from Sierra Leone. Mg was found limiting in two soils from Kenya and three soils from Rwanda and one soil each in Nigeria and Sierra Leone. Micronutrients were found to be limiting in one soil from Nigeria and one soil from Rwanda. Estimates of nutrient deficiency using growth and mean biomass were found to be correlated with each other although the latter proved to be a more sensitive measure of deficiency. With few exceptions, the relation between soil parameters and nutrient deficiencies was weak and there were no significant relations between deficiency of specific nutrients and the soil content of these elements. Although our results cannot be translated directly to the field, they confirm that individual and multiple nutrient deficiencies were common in these “non-responsive” soils and may have contributed to reported low yields. This highlights the need for balanced nutrition in legume production in SSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.