Despite the cornucopia of agricultural, economic and ecological ramifications of invasive alien plant species (IAPs) in sub-Saharan Africa, studies on their potential use as bio-insecticides have not received adequate attention compared to the burgeoning plethora of literature on their use in ethnomedicine. In the current study, we review the existing, but scattered literature on the insecticidal activity of different parts of some IAPs; specifically those invasive in sub-Saharan Africa but with published literature from Africa and elsewhere. From our literature survey, we found that 69 studies from four continents (Africa, Asia, North America and South America) reported the insecticidal activity of 23 plant species from 13 families (Asteraceae = 6 species; Solanaceae = 3 species; Apocynacee, Fabaceae and Euphorbiaceae 2 species each; Araceae, Bignoniaceae, Chenopodiaceae, Meliaceae, Mimosaceae, Myrtaceae, Papaveraceae, and Verbenaceae = 1 species each) that are invasive in, and alien to Africa. The highest number of published case studies were from India (n = 19) and Nigeria (n = 15). We found that varying concentrations of extracts or powders from different plant parts caused 50–100% mortality against a myriad of insect pests of agriculture and environmental importance. Our review discussed the prospects for exploiting IAPs as pesticidal plants in African countries especially among resource-poor small-holder farmers and locals to improve agricultural productivity and livelihoods. Finally, we highlighted safety concerns and challenges of using IAPs as bio-insecticides in Africa and formulates appropriate recommendations for future research.
The flower-galling mite Aceria lantanae (Cook) (Trombidiformes: Eriophyidae) was released for the biological control of Lantana camara L. (Verbenaceae) in South Africa in 2007, but has displayed variable and patchy establishment throughout the weed's range. Surveys were undertaken in 2013-2014, both seasonally and during the mite's peak infestation periods, to determine the influence of climatic factors on its performance. Although there were seasonal differences in the percentages of mite-infested inflorescences, these did not differ significantly between altitudinal zones. There were also no significant relationships between the percentages of mite-infested inflorescences and either of annual rainfall, temperature or relative humidity. A field inoculation trial revealed significant differences between 10 common South African L. camara varieties in their susceptibility to A. lantanae. Only three varieties displayed appreciable susceptibility (50-61% of inflorescences infested), whereas six displayed only slight to moderate susceptibility (8-21%) and one displayed a lack of susceptibility (no infestation). These data support the contention that differential varietal susceptibility and not climate is responsible for the variable performance of A. lantanae on L. camara in South Africa. Complementing the current biotype of A. lantanae, originally sourced from Florida (USA), with other biotypes from different L. camara genotypes in Central and South America could increase the mite's impact on the weed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.