X-ray computed tomography (CT) is a non-invasive medical diagnostic tool that has raised public concerns due to the associated health risks of radiation dose to patients. Reducing the radiation dose leads to noise artifacts, making the low-dose CT images unreliable for diagnosis. Hence, low-dose CT (LDCT) image reconstruction techniques have offered a new research area. In this study, a deep neural network is proposed, specifically a residual network (ResNet) using dilated convolution, batch normalization, and rectified linear unit (ReLU) layers with fused spatial- and channel-attention modules to enhance the quality of LDCT images. The network is optimized using the integration of per-pixel loss, perceptual loss via VGG16-net, and dissimilarity index loss. Through an ablation experiment, these functions show that they could effectively prevent edge oversmoothing, improve image texture, and preserve the structural details. Finally, comparative experiments showed that the qualitative and quantitative results of the proposed network outperform state-of-the-art denoising models such as block-matching 3D filtering (BM3D), Markovian-based patch generative adversarial network (patch-GAN), and dilated residual network with edge detection (DRL-E-MP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.