Tumor recurrence and drug resistance are the main obstacles blocking effective treatment of cancer patients. Cancer stem cells (CSCs) have been demonstrated to be highly related to tumor recurrence and drug resistance. Thus, eliminating CSCs may be an alternative for cancer therapy. Tumor sphere formation is a functional assay to enrich the CSC-like cells. In the present study, we tested the effects of curcumin on lung cancer stem-like cells and report that in addition to inhibition on the proliferation and colony formation of lung cancer cells, curcumin reduces tumor spheres of H460 cells. Moreover, by molecular docking analysis and tumor sphere assay we discover that curcumin was able to inhibit JAK2 activity and reduce tumor spheres via inhibiting the JAK2/STAT3 signaling pathway. In a lung cancer xenograft nude mouse model, curcumin strongly repressed tumor growth. These results imply curcumin may be a potential drug in lung CSC elimination and cancer therapy.
BackgroundColorectal cancer (CRC) is a common malignant gastrointestinal tumor. In China, CRC is the 5th most commonly diagnosed cancer. The vast majority of CRC cases are sporadic and evolve with the adenoma-carcinoma sequence. There is mounting evidence indicating that gut microbiota and inflammation play important roles in the development of CRC although study results are not entirely consistent. In the current study, we investigated the changes in the CRC-associated bacteria and plasma inflammatory factors and their relationships based on data from a case-control study of Han Chinese. We included 130 initially diagnosed CRC patients, 88 advanced colorectal adenoma patients (A-CRA), 62 patients with benign intestinal polyps and 130 controls.ResultsFecal microbiota composition was obtained using 16S ribosomal DNA (16S rDNA) sequencing. PCOA analysis showed structural differences in microbiota among the four study groups (P = 0.001, Unweighted Unifrac). Twenty-four CRC-associated bacteria were selected by a two-step statistical method and significant correlations were observed within these microbes. CRC-associated bacteria were found to change with the degree of malignancy. Plasma C-reactive protein (CRP) and soluble tumor necrosis factor II (sTNFR-II) displayed significant differences among the four study groups and increased with adenoma-carcinoma sequence. The correlations of CRP and sTNFR-II with several CRC-associated microbes were also explored.ConclusionsCRC-associated species and plasma inflammatory factors tended to change along the adenoma-carcinoma sequence. Several CRC-associated bacteria were correlated with CRP and sTNFR-II. It is likely that gut microbiome and inflammation gradually form a microenvironment that is associated with CRC development.Electronic supplementary materialThe online version of this article (10.1186/s12866-018-1232-6) contains supplementary material, which is available to authorized users.
We report the serological evidence of low-pathogenic avian influenza (LPAI) H9N2 infection in an occupational poultry-exposed population and a general population. A serological survey of an occupational poultry-exposed population and a general population was conducted using a haemagglutinin-inhibiting (HI) assay in Shanghai, China, from January 2008 to December 2010. Evidence of higher anti-H9 antibodies was found in serum samples collected from poultry workers. During this period, 239 H9N2 avian influenza viruses (AIVs) were isolated from 9297 tracheal and cloacal paired specimens collected from the poultry in live poultry markets. In addition, a total of 733 influenza viruses were isolated from 1569 nasal and throat swabs collected from patients with influenza-like symptoms in a sentinel hospital, which include H3N2, H1N1, pandemic H1N1 and B, but no H9N2 virus was detected. These findings highlight the need for long-term surveillance of avian influenza viruses in occupational poultry-exposed workers.
Certain antibiotics detected in urine are associated with childhood obesity. In the current experimental study, we investigated two representative antibiotics detected in urine, florfenicol and azithromycin, for their early effects on adipogenesis, gut microbiota, short-chain fatty acids (SCFAs), and bile acids in mice. Thirty C57BL/6 mice aged four weeks were randomly divided into three groups (florfenicol, azithromycin and control). The two experimental groups were administered florfenicol or azithromycin at 5 mg/kg/day for four weeks. Body weight was measured weekly. The composition of the gut microbiota, body fat, SCFAs, and bile acids in colon contents were measured at the end of the experiment. The composition of the gut microbiota was determined by sequencing the bacterial 16S rRNA gene. The concentration of SCFAs and bile acids was determined using gas chromatography and liquid chromatography coupled to tandem mass spectrometry, respectively. The composition of the gut microbiota indicated that the two antibiotics altered the gut microbiota composition and decreased its richness and diversity. At the phylum level, the ratio of Firmicutes/Bacteroidetes increased significantly in the antibiotic groups. At the genus level, there were declines in Christensenella, Gordonibacter and Anaerotruncus in the florfenicol group, in Lactobacillus in the azithromycin group, and in Alistipes, Desulfovibrio, Parasutterella and Rikenella in both the antibiotic groups. The decrease in Rikenella in the azithromycin group was particularly noticeable. The concentration of SCFAs and secondary bile acids decreased in the colon, but the concentration of primary bile acids increased. These findings indicated that florfenicol and azithromycin increased adipogenesis and altered gut microbiota composition, SCFA production, and bile acid metabolism, suggesting that exposure to antibiotics might be one risk factor for childhood obesity. More studies are needed to investigate the specific mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.