Objective: To investigate the feasibility to restore functional endometrium using bone marrow mesenchymal stem cells (BMSCs) in the Sprague Dawley (SD["SD" has been defined as both "Sprague Dawley" and "standard deviation." Please clarify which one is to be followed.]) rat model for Asherman syndrome (AS). Design: Basic research on treatment of AS utilizing an optimized rat model. Setting: University research laboratories. Animal(s): Sprague Dawley rat model in which AS was induced in accordance to an optimized protocol. Intervention(s): Bone marrow mesenchymal stem cells were harvested from the rat's bone marrow and labeled with green fluorescent protein (GFP) in the second passage of BMSCs. The fifth passage of GFP-labeled BMSCs was injected systemically through the tail vein in the optimized AS rat model. Main Outcome Measure(s): We examined the reproliferation of the endometrial lining and the expression of markers for endometrium and endometrial receptivity. The localization of engrafted GFPlabeled BMSCs was determined by a laser scanning confocal microscope and a fluorescence microscope. The number of pregnant rats and implanted embryos in each uterus was recorded to evaluate the function of endometrium. Result(s): We had demonstrated that in the in vivo experiments on our rat model for AS, the group which received BMSC injection had significantly improved reproductive outcomes-70% of these rats conceived, whereas none of the rats in the control group got pregnant (P < .01, w 2 test). The mean number of embryos undergoing implantation was 14 + 1.24 in the sham group and 7 + 5.70 in the BMSC group (Levene test, P ¼ .001). There was no significant difference between the groups from the time of coitus to conception. To further determine how BMSC injection could have resulted in the improved reproductive outcomes in rats with AS, we employed immunohistochemical techniques to examine the endometrium of these treated rats. On hematoxylin-eosin staining, we noted the reproliferation of all layers of the endometrium and with Masson staining, we noted significant reduction in fibrosis in the damaged endometrium of rats treated with BMSCs. Counterstaining for GFP and cytokeratin-positive cells was noted in the endometrial lining of treated rats, which might suggest the action of BMSCs in regenerating the damaged endometrial lining. The expression of the endometrial receptivity marker, Leukemia inhibitory factor (LIF), in this regenerated endometrial lining could have resulted in the improved reproductive outcomes observed in the AS rat model treated with BMSCs. Conclusion: Bone marrow mesenchymal stem cells were likely to play an important role in the reconstruction of the injured endometrium and improvement of reproductive outcomes in the optimized AS rat model.
SLIT2/ROBO1 signalling may regulate trophoblast differentiation and invasion causing restricting β-hCG production, shallow trophoblast invasion and inhibiting placental angiogenesis in missed and threatened miscarriage during the first trimester.
Introduction:The increasing cesarean section rate has led to an increase in the number of subsequent pregnancies resulting in a cesarean scar pregnancy. There appears to be preferential attachment of the blastocyst to the scar site, which may be associated with defective decidua in that region, resulting in abnormal implantation, which can in turn negatively affect the success of the pregnancy. The aim of the current study was to evaluate the extravillous trophoblast, decidua, and myometrium in scar and adjacent non-scar regions of the implantation site of a cesarean scar pregnancy.Material and Methods: Samples containing a gestational mass were obtained by laparoscopic excision from patients with a cesarean scar pregnancy at 6-11 weeks of gestation as diagnosed by transvaginal or transabdominal ultrasound (n = 8 type II cesarean scar pregnancy). Cesarean scar pregnancy tissues were separated into scar and non-scar regions, and the scar regions were sub-separated into non-implantation and implantation sites. Serial sections were histologically examined after hematoxylin and eosin, Masson's trichrome and immunochemical staining, and changes in the myometrium, extravillous trophoblast, and decidua were evaluated. Results:In cesarean scar pregnancy, compared with scars not in the implantation site, scars in the implantation site displayed increased fibrosis, and had disrupted myometrium, which was related to varying patterns of E-cadherin expression as a response to extravillous trophoblast invasion. In addition, local decidua was found at the non-scar implantation sites, with multinucleated trophoblast giant cell accumulation and shallow invasion. These features were not evident in the scar implantation sites. Conclusions:This study emphasizes that the decidua drives multinucleated trophoblast giant cell differentiation, limiting the degree of invasion. Better characterization of this differentiation process may be helpful for better management and avoidance of the consequences of cesarean scar pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.