Whether species coculture can overcome the shortcomings of crop monoculture requires additional study. Here, we show how aquatic animals (i.e. carp, crabs, and softshell turtles) benefit paddy ecosystems when cocultured with rice. Three separate field experiments and three separate mesocosm experiments were conducted. Each experiment included a rice monoculture (RM) treatment and a rice-aquatic animal (RA) coculture treatment; RA included feed addition for aquatic animals. In the field experiments, rice yield was higher with RA than with RM, and RA also produced aquatic animal yields that averaged 0.52–2.57 t ha-1. Compared to their corresponding RMs, the three RAs had significantly higher apparent nitrogen (N)-use efficiency and lower weed infestation, while soil N contents were stable over time. Dietary reconstruction analysis based on 13C and 15N showed that 16.0–50.2% of aquatic animal foods were from naturally occurring organisms in the rice fields. Stable-isotope-labeling (13C) in the field experiments indicated that the organic matter decomposition rate was greater with RA than with RM. Isotope 15N labeling in the mesocosm experiments indicated that rice used 13.0–35.1% of the aquatic animal feed-N. All these results suggest that rice-aquatic animal coculture increases food production, increases N-use efficiency, and maintains soil N content by reducing weeds and promoting decomposition and complementary N use. Our study supports the view that adding species to monocultures may enhance agroecosystem functions.
The genetic diversity of cultured species (e.g., plants and fish) has decreased as intensive agriculture and aquaculture have increased in recent decades. Maintaining genetic diversity in agriculture is a significant concern. To test whether aquaculture affects the genetic diversity of aquatic animals and whether traditional agriculture could help maintain genetic diversity, we conducted a meta-analysis to quantify the genetic diversity of cultured and wild populations. We also examined the genetic diversity and population genetic structure of common carp (Cyprinus carpio) in the traditional rice–fish coculture in the south of Zhejiang Province, China, using 20 microsatellite loci. The results of the meta-analysis showed a negative overall effect size of all cultured aquatic animals that were tested both when weighted by population replicate and when weighted by the inverse of variance. Aquaculture has caused a general decline in the genetic diversity of many cultured aquatic animals. The results from the survey of a traditional rice–fish coculture system in the south of Zhejiang Province of China showed high levels of genetic diversity in all 10 sampled populations (mean Na = 7.40, mean Ne = 4.57, mean I = 1.61, mean He = 0.71, and mean Ho = 0.73). Both the conventional analysis and a model-based analysis revealed a high and significant genetic divergence among the 10 sampled populations all over the three counties (FST value ranged from 0.00 to 0.13, and Nei’s genetic distance ranged from 0.07 to 0.62). Populations within Yongjia and Jingning counties were also genetically differentiated, respectively. Furthermore, molecular variance (AMOVA), membership coefficients estimated by STRUCTURE, PCoA, and migration network analysis supported the findings from pairwise FST values. Our results suggest that the traditional rice–fish coculture plays an important role in maintaining the genetic diversity of carp cocultured in rice paddies and future policies should favor the conservation of the rice–fish system and raise the awareness of farmers on methods to maintain carp genetic diversity.
Background Understanding how traditional agriculture systems have been maintained would help design sustainable agriculture. In this study, we examined how farmers have used two types of local trees (Torreya grandis) for stable yield and maintaining genetic diversity in the “globally important agricultural heritage torreya tree system”. The two type of torreya trees are grafted torreya (GT) tree and non-grafted-torreya (NGT) tree. The GT tree has only female and was used to produced seed yields. The NGT tree has both male and female and was used to support GT tree by providing pollens and rootstocks. We first tested the ratio of GT tree to NGT tree, their age groups, ratio of female trees (including GT and NGT trees) to male, and the flowering period of GT and NGT trees. We then tested seed yields and genetic diversity of GT and NGT trees. We further tested gene flow among NGT trees, and the relationship of gene flow with exchange rates of pollens and seeds. Results GT and NGT trees (male and female) were planted in a mosaic pattern with a ratio of 4:1 (GT:NGT). In this planting pattern, one NGT male trees provided pollen for 20 female trees of GT and NGT. The trees were classified into four age groups (I = 100–400 years old; II = 400–700 years old; III = 700–1000 years old; and IV = 1000–1300 years old) based on basal diameter. The entire flowering period was longer for NGT trees than for GT trees that ensured GT trees (which lack of males) being exposed to pollens. GT tree had high and stable seed yield that increased with age groups. High genetic diversity has been maintained in both rootstocks of the GT trees and NGT trees. There was a strong gene flow among NGT trees, which positive correlated with the exchange rates of pollens and seeds. Conclusions Our results suggest that farmers obtain stable seed yields, and maintain high genetic diversity by ingeniously using the local GT tree as yield producer and NGT tree as supporter. These GT and NGT trees together ensure sustainable torreya production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.