Industry 4.0 refers to the increasing tendency towards automation and data exchange in technologies like Big Data and AI. The existence of technology means telecommunication companies have to adapt. Therefore, it takes great people so that the company can continue to survive. The problem that companies often face in hiring great people is that it costs a lot and takes a long time to recruit. Predictive analysis can assist in identifying system issues and solutions. This study aims to develop predictive analytics that can improve recruitment screening based on CVs and find the best predictive model for the company to reduce costs and long recruitment cycles using technology. The authors built an analytical prediction model in four stages: data collection, data preprocessing, model building, and model evaluation. This technique uses Random Forest and Naive Bayes classification algorithms. Both systems properly predicted more data sets with 70% accuracy, 70% precision, and a recall rate above 80%. Compared between the two techniques, Random Forest outperforms Naive Bayes for this predictive model. A lot of people are talking about predictive analytics for hiring, but there aren't many data mining frameworks that can help to find rules based on the CVs of people who have worked for companies before.Keywords: Recruitment, Human Resource, HR Analytic, Predictive Analytic, Random Forest, Naïve Bayes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.