Whether invertebrates exhibit positive emotion-like states and what mechanisms underlie such states remain poorly understood. We demonstrate that bumblebees exhibit dopamine-dependent positive emotion-like states across behavioral contexts. After training with one rewarding and one unrewarding cue, bees that received pretest sucrose responded in a positive manner toward ambiguous cues. In a second experiment, pretest consumption of sucrose solution resulted in a shorter time to reinitiate foraging after a simulated predator attack. These behavioral changes were abolished with topical application of the dopamine antagonist fluphenazine. Further experiments established that pretest sucrose does not simply cause bees to become more exploratory. Our findings present a new opportunity for understanding the fundamental neural elements of emotions and may alter the view of how emotion states affect decision-making in animals.
The development of accurate measures of animal emotions is important for improving and promoting animal welfare. Cognitive bias indicates the effect of emotional states on cognitive processes, such as memory, attention, and judgement. Cognitive bias tests complement existing behavioural and physiological measures for assessing the valence of animal emotions indirectly. The judgement bias test has been used to assess emotional states in non-human animals; mainly in laboratory settings. The aim of this review is to summarise the findings on the use of the judgement bias test approach in assessing emotions in non-human animals, focusing in particular on farm livestock. The evidence suggests that it is possible to manipulate affective states and induce judgement bias effects in farm livestock. In addition, the results support the effectiveness of manipulating environmental variables for inducing negative or positive affective states. However, the evidence from farm livestock does not consistently confirm the directionality of the hypotheses. The use of specific strategies to induce positive or negative judgement bias, such as the manipulation of housing conditions, could account for the inconsistency of findings. The study of cognitive processes related to emotional states in livestock has great potential to advance and improve our understanding of animal welfare. environmental enrichment induces 'pessimism' in captive European starlings (Sturnus vulgaris).Animal Welfare 16: 33-36 Bateson M, Desiré S, Gartside SE and Wright GA 2011 Agitated honeybees exhibit pessimistic cognitive biases. Current Biology 21: 1070-1073. http://dx.Brydges NM, Hall H, Nicolson R, Holmes MC and Hall J 2012 The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: a rat model. PLoS One 7: e48143. http://dx.
IntroductionThe computational demands of sociality (maintaining group cohesion, reducing conflict) and ecological problems (extractive foraging, memorizing resource locations) are the main drivers proposed to explain the evolution cognition. Different predictions follow, about whether animals would preferentially learn new tasks socially or not, but the prevalent view today is that intelligent species should excel at social learning. However, the predictions were originally used to explain primate cognition, and studies of species with relatively smaller brains are rare. By contrast, domestication has often led to a decrease in brain size, which could affect cognition. In domestic animals, the relaxed selection pressures compared to a wild environment could have led to reduced social and physical cognition. Goats possess several features commonly associated with advanced cognition, such as successful colonization of new environments and complex fission-fusion societies. Here, we assessed goat social and physical cognition as well as long-term memory of a complex two-step foraging task (food box cognitive challenge), in order to investigate some of the main selection pressures thought to affect the evolution of ungulate cognition.ResultsThe majority of trained goats (9/12) successfully learned the task quickly; on average, within 12 trials. After intervals of up to 10 months, they solved the task within two minutes, indicating excellent long-term memory. The goats did not learn the task faster after observing a demonstrator than if they did not have that opportunity. This indicates that they learned through individual rather than social learning.ConclusionsThe individual learning abilities and long-term memory of goats highlighted in our study suggest that domestication has not affected goat physical cognition. However, these cognitive abilities contrast with the apparent lack of social learning, suggesting that relatively intelligent species do not always preferentially learn socially. We propose that goat cognition, and maybe more generally ungulate cognition, is mainly driven by the need to forage efficiently in harsh environments and feed on plants that are difficult to access and to process, more than by the computational demands of sociality. Our results could also explain why goats are so successful at colonizing new environments.
Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.