In this work we investigate the use of deep learning for distortion-generic blind image quality assessment. We report on different design choices, ranging from the use of features extracted from pre-trained Convolutional Neural Networks (CNNs) as a generic image description, to the use of features extracted from a CNN fine-tuned for the image quality task. Our best proposal, named DeepBIQ, estimates the image quality by average-pooling the scores predicted on multiple sub-regions of the original image. Experimental results on the LIVE In the Wild Image Quality Challenge Database show that DeepBIQ outperforms the state-ofthe-art methods compared, having a Linear Correlation Coefficient (LCC) with human subjective scores of almost 0.91. These results are further confirmed also on four benchmark databases of synthetically distorted images: LIVE, CSIQ, TID2008 and TID2013.
We introduce a no-reference method for the assessment of the quality of videos affected by in-capture distortions due to camera hardware and processing software. The proposed method encodes both quality attributes and semantic content of each video frame by using two Convolutional Neural Networks (CNNs) and then estimates the quality score of the whole video by using a Recurrent Neural Network (RNN), which models the temporal information. The extensive experiments conducted on four benchmark databases (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC) containing in-capture distortions demonstrate the effectiveness of the proposed method and its ability to generalize in cross-database setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.