Abstract. Weather index insurance is an innovative tool in risk transfer for disasters induced by natural hazards. This paper proposes a methodology that uses machine learning algorithms for the identification of extreme flood and drought events aimed at reducing the basis risk connected to this kind of insurance mechanism. The model types selected for this study were the neural network and the support vector machine, vastly adopted for classification problems, which were built exploring thousands of possible configurations based on the combination of different model parameters. The models were developed and tested in the Dominican Republic context, based on data from multiple sources covering a time period between 2000 and 2019. Using rainfall and soil moisture data, the machine learning algorithms provided a strong improvement when compared to logistic regression models, used as a baseline for both hazards. Furthermore, increasing the amount of information provided during the training of the models proved to be beneficial to the performances, increasing their classification accuracy and confirming the ability of these algorithms to exploit big data and their potential for application within index insurance products.
The development of strategies to adapt to and mitigate the potential adverse consequences of natural hazards requires support from risk assessment studies that quantify the impacts of hazardous events on our society. A comprehensive analysis of risk commonly evaluates the elements exposed to the hazard probabilistic scenarios and their vulnerabilities. However, while significant advances have been made in the assessment of direct losses, indirect impacts are less frequently examined. This work assesses the indirect consequences of two hydrologic hazards, i.e., pluvial and fluvial floods, in an urban context from a system perspective. It presents a methodology to estimate the services accessibility risk (SAR) that considers the accessibility of roads and the connection between providers and users of services in a city. The feasibility of the proposed approach is illustrated by an application to a pilot study in Monza city (northern Italy) considering pluvial and fluvial flood hazard with different return periods. The results in terms of the social and economic impacts are analyzed considering features of age, disability, and the different economic sectors.
In the last decades, resilience became officially the worldwide cornerstone to reduce the risk of disasters and improve preparedness, response, and recovery capacities. Although the concept of resilience is now clear, it is still under debate how to model and quantify it. The aim of this work was to quantify the resilience of a complex system, such as a densely populated and urbanized area, by modelling it with a graph, the mathematical representation of the system element and connections. We showed that the graph can account for the resilience characteristics included in its definition according to the United Nations General Assembly, considering two significant aspects of this definition in particular: (1) resilience is a property of a system and not of single entities and (2) resilience is a property of the system dynamic response. We proposed to represent the exposed elements of the system and their connections (i.e., the services they exchange) with a weighted and redundant graph. By mean of it, we assessed the systemic properties, such as authority and hub values and highlighted the centrality of some elements. Furthermore, we showed that after an external perturbation, such as a hazardous event, each element can dynamically adapt, and a new graph configuration is set up, taking advantage of the redundancy of the connections and the capacity of each element to supply lost services. Finally, we proposed a quantitative metric for resilience as the actual reduction of the impacts of events at different return periods when resilient properties of the system are activated. To illustrate step by step the proposed methodology and show its practical feasibility, we applied it to a pilot study: the city of Monza, a densely populated urban environment exposed to river and pluvial floods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.