New electricity generation technologies are often assessed using simple metrics such as average return, break-even energy prices or levelised cost of electricity. These simple metrics do not always capture the full economic value of a technology, particularly those that can react quickly and efficiently to changes in demand. In a wholesale spot market, opportunities exist to capture greater revenues, as currently achieved by peak power plants. This study demonstrates the use of two complementary methods to determine how storage should be operated to maximise revenue. First, the authors formulate and solve the problem as a linear program. The results indicate that there are distinct control modes. They then use Pontryagin's principle to confirm that the optimal operating strategy has three distinct control modes: (i) store all collected power, without generating, (ii) generate using collected power only and (iii) generate at maximum capacity using both collected and stored power. The mode that should be used at any instant depends only on the spot price of electricity relative to a pair of critical prices. These critical prices depend on the total energy that will be collected and the turnaround efficiency of the storage system.
The proliferation of non-scheduled generation from renewable electrical energy sources such concentrated solar power (CSP) presents a need for enabling scheduled generation by incorporating energy storage; either via directly coupled Thermal Energy Storage (TES) or Electrical Storage Systems (ESS) distributed within the electrical network or grid. The challenges for 100% renewable energy generation are: to minimise capitalisation cost and to maximise energy dispatch capacity. The aims of this review article are twofold: to review storage technologies and to survey the most appropriate optimisation techniques to determine optimal operation and size of storage of a system to operate in the Australian National Energy Market (NEM). Storage technologies are reviewed to establish indicative characterisations of energy density, conversion efficiency, charge/discharge rates and costings. A partitioning of optimisation techniques based on methods most appropriate for various time scales is performed: from "whole of year", seasonal, monthly, weekly and daily averaging to those best suited matching the NEM bid timing of five minute dispatch bidding, averaged on the half hour as the trading settlement spot price. Finally, a selection of the most promising research directions and methods to determine the optimal operation and sizing of storage for renewables in the grid is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.