Aim The distribution range of Lactuca serriola, a species native to the summerdry mediterranean climate, has expanded northwards during the last 250 years. This paper assesses the influence of climate on the range expansion of this species and highlights the importance of anthropogenic disturbance to its spread. Location Central and Northern Europe.Methods Data on the geographic distribution of L. serriola were assembled through a literature search as well as through floristic and herbarium surveys. Maps of the spread of L. serriola in Central and Northern Europe were prepared based on herbarium data. The spread was assessed more precisely in Germany, Austria and Great Britain by pooling herbarium and literature data. We modelled the bioclimatic niche of the species using occurrence and climatic data covering the last century to generate projections of suitable habitats under the climatic conditions of five time periods. We tested whether the observed distribution of L. serriola could be explained for each time period, assuming that the climatic niche of the species was conserved across time.Results The species has spread northwards since the beginning of the 19th century. We show that climate warming in Europe increased the number of sites suitable for the species at northern latitudes. Until the late 1970s, the distribution of the species corresponded to the climatically suitable sites available. For the last two decades, however, we could not show any significant relationship between the increase in suitable sites and the distributional range change of L. serriola. However, we highlight potential areas the species could spread to in the future (Great Britain, southern Scandinavia and the Swedish coast). It is predominantly non-climatic influences of global change that have contributed to its rapid spread. Main conclusionsThe observation that colonizing species are not filling their climatically suitable range might imply that, potentially, other ruderal species could expand far beyond their current range. Our work highlights the importance of historical floristic and herbarium data for understanding the expansion of a species. Such historical distributional data can provide valuable information for those planning the management of contemporary environmental problems, such as species responses to environmental change.
Interspecific gene flow can lead to the formation of hybrid populations that have a competitive advantage over the parental populations, even for hybrids from a cross between crops and wild relatives. Wild prickly lettuce (Lactuca serriola) has recently expanded in Europe and hybridization with the related crop species (cultivated lettuce, L. sativa) has been hypothesized as one of the mechanisms behind this expansion. In a basically selfing species, such as lettuce, assessing hybridization in natural populations may not be straightforward. Therefore, we analysed a uniquely large data set of plants genotyped with SSR (simple sequence repeat) markers with two programs for Bayesian population genetic analysis, STRUCTURE and NewHybrids. The data set comprised 7738 plants, including a complete genebank collection, which provided a wide coverage of cultivated germplasm and a fair coverage of wild accessions, and a set of wild populations recently sampled across Europe. STRUCTURE analysis inferred the occurrence of hybrids at a level of 7% across Europe. NewHybrids indicated these hybrids to be advanced selfed generations of a hybridization event or of one backcross after such an event, which is according to expectations for a basically selfing species. These advanced selfed generations could not be detected effectively with crop-specific alleles. In the northern part of Europe, where the expansion of L. serriola took place, the fewest putative hybrids were found. Therefore, we conclude that other mechanisms than crop/wild gene flow, such as an increase in disturbed habitats and/or climate warming, are more likely explanations for this expansion.
Background: Railway tracks represent a highly interlinked habitat with numerous possibilities for accidental entry of oilseed rape due to seed spill during transportation. Moreover, glyphosate is regularly employed to control the vegetation, increasing the possibility of establishment for plants resistant to it. We surveyed the presence of genetically engineered glyphosate tolerant oilseed rape (Brassica napus) with a focus on the most important Swiss railway stations. Our objective was to detect accidental establishment of transgenic plants, since Switzerland does not import nor cultivate transgenic oilseed rape. Results: Seventy-nine railway areas were sampled in Switzerland and the Principality of Liechtenstein, and the feral presence of oilseed rape was detected in 58 of them. A total of 2403 individuals were tested for genetic modification using commercially available immunologic test kits. In four localities, one located in Lugano and three in the area of Basel, a total of 50 plants expressing the CP4 EPSPS protein were detected. In two of the localities, survival of herbicide applications was observed. The populations were probably introduced through contaminated seed spills from freight trains, or during the transfer of goods from cargo ships to trains. Conclusions: Railways represent an ideal system for herbicide resistant transgenic plants to establish and spread as a result of high selective pressure in favour of herbicide resistance with consequent increased difficulties to keep the infrastructure free of weeds. Crop-to-wild gene flow can occur as several sexually compatible species which are congeneric or in allied genera to oilseed rape were found growing sympatrically. Moreover, the capillary presence of railways in the agricultural landscape provides a putative source of contamination of GE-free agriculture. Our results suggests that carefully adapted monitoring designs may be set in order to detect introduction events that can lead to rapid establishment and growing populations as the accepted contamination thresholds are likely to be biologically insufficient to prevent further environmental contamination.
. Progeny was screened morphologically for detecting natural hybrids. Prior to the experiment, specific RAPD markers were used to confirm that morphological characters were reliable for hybrid identification. Hybridization occurred up to the maximal distance tested (40 m), and hybridization rates varied between 0 to 26%, decreasing with distance. More than 80% of the wild plants produced at least one hybrid (incidence of hybridization, IH) at 0 m and 1 m. It equaled 4 to 5% at 40 m. In sympatric crop-wild populations, cross-pollination between cultivated lettuce and its wild relative has to be seen as the rule rather than the exception for short distances.
Prickly lettuce (Lactuca serriola L., Asteraceae), a wild relative of cultivated lettuce, is an autogamous species which greatly expanded throughout Western and Northern Europe during the last 2 centuries. Here, we present a large-scale biogeographic genetic analysis performed on a dataset represented by 2622 individuals from 110 wild European populations. Thirty-two maternally inherited chloroplast RFLP-markers and 10 nuclear microsatellite loci were used. Microsatellites revealed low genetic variation and high inbreeding coefficients within populations, as well as strong genetic differentiation between populations, which was in accordance with the autogamous breeding system. Analysis of molecular variance based clustering indicated the presence of 3 population clusters, which showed strong geographical patterns. One cluster occupied United Kingdom and part of Northern Europe, and characterized populations with a single predominant genotype. The second mostly combined populations from Northern Europe, while the third cluster grouped populations particularly from Southern Europe. Kriging of gene diversity for L. serriola corroborated northwards and westwards spread from Central (Eastern) Europe. Significant lower genetic diversity characterized the newly colonized parts of the range compared to the historical ones, confirming the importance of founder effects. Stronger pattern of isolation by distance was assessed in the newly colonized areas than in the historical areas (Mantel's r = 0.20). In the newly colonized areas, populations at short geographic distances were genetically more similar than those in the historical areas. Our results corroborate the species' recent and rapid northward and westward colonization from Eastern Europe, as well as a decrease of genetic diversity in recently established populations.Subject area: Population structure and phylogeography
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.