The bioavailability of phenolic compounds from five cultivars of frozen sweet cherries was assessed by a digestion process involving pepsin-HCl digestion (to simulate gastric digestion) and pancreatin digestion with bile salts (to simulate small intestine conditions) and dialyzed to assess serum- and colon-available fractions. After pepsin digestion, the % recovery of total phenolics, relative to the original starting material, increased, whereas the % anthocyanins did not change. Following pancreatic digestion and dialysis, the total phenolics in the IN (serum-available) fraction was about 26-30% and the OUT (colon-available) fraction was about 77-101%. The anthocyanin content in the IN fraction was 15-21%, and in the OUT fraction, it was 52-67%. Skeena, Lapins, and Sweetheart cultivars contained higher levels of total phenolics and anthocyanins, which resulted in higher concentrations of these compounds in the IN and OUT fractions. The potential bioavailability of phenolic compounds was also assessed in Bing and Lapins cultivars at three ripening stages. Immature cherries had higher % total phenolics in the IN fraction than mature or overmature cherries. However, immature cherries had the lowest concentrations of these compounds, making the actual bioavailable amounts of these compounds lower than for mature and overmature fruit. High-performance liquid chromatography analysis of Lapins cherries at three maturity stages confirmed the results obtained using spectrophotometric methods for total phenolics and anthocyanins.
Hepatitis C virus infection has a substantial effect on morbidity and mortality worldwide because it is a cause of cirrhosis, hepatocellular carcinoma, liver transplantation, and liver-related death. Direct acting antiviral drugs available today have high efficacy and excellent safety and can be used in all patients with clinically evident chronic liver disease and in groups that demonstrate risk behaviors to reduce the spread of infection. The Global Health Strategy of WHO to eliminate hepatitis infection by 2030 assumes “a 90% reduction in new cases of chronic hepatitis C, a 65% reduction in hepatitis C deaths, and treatment of 80% of eligible people with HCV infections”. In this review effective models and strategies for achieving the global elimination of HCV infection are analyzed. The screening strategies must be simple and equally effective in high-risk groups and in the general population; fast and effective models for appropriate diagnosis of liver disease are needed; strategies for direct acting antiviral drug selection must be cost-effective; linkage to care models in populations at risk and in marginalized social classes must be specifically designed and applied; strategies for obtaining an effective vaccine against HCV infection have yet to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.