Minimum ADC values in glioblastoma multiforme could be used as a preoperative parameter to estimate the status of MGMT promoter methylation and the survival of patients.
The use of intraoperative DTI demonstrated brain shifting of the CST. DTI evaluation of white matter tracts can be used during surgical procedures only if updated with intraoperative acquisitions.
Magnetic resonance imaging (MRI) with a dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) sequence to study brain tumours provides information on the haemodynamic characteristics of the neoplastic tissue. Brain perfusion maps and calculation of perfusion parameters, such as relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV) and mean transit time (MTT) allow assessment of vascularity and angiogenesis within tumours of the central nervous system (CNS), thus providing additional information to conventional MRI sequences. Although DSC-PWI has long been used, its clinical use in the study of brain tumours in daily clinical practice is still to be defined. The aim of this review was to analyse the application of perfusion MRI in the study of brain tumours by summarising our personal experience and the main results reported in the literature.
Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm.
CADASIL is a hereditary disease characterized by cerebral subcortical microangiopathy leading to early onset cerebral strokes and progressive severe cognitive impairment. Until now, only few studies have investigated the extent and localization of grey matter (GM) involvement. The purpose of our study was to evaluate GM volume alterations in CADASIL patients compared to healthy subjects. We also looked for correlations between global and regional white matter (WM) lesion load and GM volume alterations. 14 genetically proved CADASIL patients and 12 healthy subjects were enrolled in our study. Brain MRI (1.5 T) was acquired in all subjects. Optimized-voxel based morphometry method was applied for the comparison of brain volumes between CADASIL patients and controls. Global and lobar WM lesion loads were calculated for each patient and used as covariate-of-interest for regression analyses with SPM-8. Compared to controls, patients showed GM volume reductions in bilateral temporal lobes (p < 0.05; FDR-corrected). Regression analysis in the patient group revealed a correlation between total WM lesion load and temporal GM atrophy (p < 0.05; uncorrected), not between temporal lesion load and GM atrophy. Temporal GM volume reduction was demonstrated in CADASIL patients compared to controls; it was related to WM lesion load involving the whole brain but not to lobar and, specifically, temporal WM lesion load. Complex interactions between sub-cortical and cortical damage should be hypothesized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.