Gauge invariance is the cornerstone of modern quantum field theory [1][2][3][4]. Recently, it has been shown that the quantum Rabi model, describing the dipolar coupling between a two-level atom and a quantized electromagnetic field, violates this principle [5][6][7]. This widely used model describes a plethora of quantum systems and physical processes under different interaction regimes [8,9]. In the ultrastrong coupling regime, it provides predictions which drastically depend on the chosen gauge. This failure is attributed to the finite-level truncation of the matter system. We show that a careful application of the gauge principle is able to restore gauge invariance even for extreme lightmatter interaction regimes. The resulting quantum Rabi Hamiltonian in the Coulomb gauge differs significantly from the standard model and provides the same physical results obtained by using the dipole gauge. It contains field operators to all orders that cannot be neglected when the coupling strength is high. These results shed light on subtleties of gauge invariance in the nonperturbative and extreme interaction regimes, which are now experimentally accessible, and solve all the long-lasting controversies arising from gauge ambiguities in the quantum Rabi and Dicke models [5,[10][11][12][13][14][15][16][17][18].arXiv:1809.08749v3 [quant-ph]
We consider two separate atoms interacting with a single-mode optical resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counter-rotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission processes can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.
When an atom is strongly coupled to a cavity, the two systems can exchange a single photon through a coherent Rabi oscillation. This process enables precise quantum-state engineering and manipulation of atoms and photons in a cavity, which play a central role in quantum information and measurement. Recently, a new regime of cavity QED has been reached experimentally where the strength of the interaction between light and artificial atoms (qubits) becomes comparable to the atomic transition frequency or the resonance frequency of the cavity mode. Here we show that this regime can strongly modify the concept of vacuum Rabi oscillations, enabling multiphoton exchanges between the qubit and the resonator. We find that experimental state-of-the-art circuit-QED systems can undergo two-and three-photon vacuum Rabi oscillations. These anomalous Rabi oscillations can be exploited for the realization of efficient Fock-state sources of light and complex entangled states of qubits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.