We construct the one-dimensional topological sector of $$ \mathcal{N} $$ N = 6 ABJ(M) theory and study its relation with the mass-deformed partition function on S3. Supersymmetric localization provides an exact representation of this partition function as a matrix integral, which interpolates between weak and strong coupling regimes. It has been proposed that correlation functions of dimension-one topological operators should be computed through suitable derivatives with respect to the masses, but a precise proof is still lacking. We present non-trivial evidence for this relation by computing the two-point function at two-loop, successfully matching the matrix model expansion at weak coupling and finite ranks. As a by-product we obtain the two-loop explicit expression for the central charge cT of ABJ(M) theory. Three- and four-point functions up to one-loop confirm the relation as well. Our result points towards the possibility to localize the one-dimensional topological sector of ABJ(M) and may also be useful in the bootstrap program for 3d SCFTs.
We investigate several aspects of BPS latitude Wilson loops in gauge theories in three dimensions with $$ \mathcal{N} $$ N ≥ 4 supersymmetry. We derive a matrix model for the bosonic latitude Wilson loop in ABJM using supersymmetric localization, and show how to extend the computation to more general Chern-Simons-matter theories. We then define latitude type Wilson and vortex loop operators in theories without Chern-Simons terms, and explore a connection to the recently derived superalgebra defining local Higgs and Coulomb branch operators in these theories. Finally, we identify a BPS loop operator dual to the bosonic latitude Wilson loop which is a novel bound state of Wilson and vortex loops, defined using a worldvolume supersymmetric quantum mechanics.
We investigate the one-dimensional defect SCFT defined on the 1/2 BPS Wilson line/loop in ABJ(M) theory. We show that the supermatrix structure of the defect imposes a covariant supermatrix representation of the supercharges. Exploiting this covariant formulation, we prove the existence of a long multiplet whose highest weight state is a constant supermatrix operator. At weak coupling, we study this operator in perturbation theory and confirm that it acquires a non-trivial anomalous dimension. At strong coupling, we conjecture that this operator is dual to the lowest bound state of fluctuations of the fundamental open string in AdS4 × ℂℙ3 around the classical 1/2 BPS solution. Quite unexpectedly, this operator also arises in the cohomological equivalence between bosonic and fermionic Wilson loops. We also discuss some regularization subtleties arising in perturbative calculations on the infinite Wilson line.
We provide a proof for the conjectured equality of the generating function of integrated Higgs and Coulomb branch topological operators in 3d $$ \mathcal{N} $$ N ≥ 4 gauge theories and the three sphere partition function deformed by mass or FI parameters. The equality is the result of cohomological equivalence and applies to all theories in this class, including ABJM and other generalized Gaiotto-Witten models, and those without an explicit supersymmetric Lagrangian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.