Background:The genetic characterization of obese individuals could clarify the molecular mechanisms underlying body weight regulation and lead to targeted therapy. Here we report variants of the proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) genes detected in severely obese adults living in southern Italy. Methods: A total of 196 unrelated nondiabetic severely obese individuals [111 females and 85 males; mean (SD) age, 32.2 (11.5) years; mean body mass index, 48.8 (8.1) kg/m 2 ] and 100 normal-weight healthy volunteers (34 males and 66 females) entered the study. POMC and MC4R were genotyped by sequencing analysis. Leptin, insulin, glucose, and the lipid profile were measured in fasting serum samples. We used the protein truncation test to verify the stop-codon mutation. Anthropometric measurements, sitting blood pressure, and heart rate were also recorded. Results: Of the obese participants, 1.5% had mutations in POMC exon 3 (new mutations, P231L and E244X; known, R236G) and 2.5% had MC4R mutations (new mutations, W174C, Q43X, S19fsX51, and I317V; known, A175T). These mutations were not present in the controls. Gene polymorphisms were identified in similar percentages of severely obese and nonobese individu-
Hereditary fructose intolerance (HFI) is a recessively inherited disorder of carbohydrate metabolism caused by impaired functioning of human liver aldolase (B isoform; ALDOB). To-date, 29 enzyme-impairing mutations have been identified in the aldolase B gene. Here we report six novel HFI single nucleotide changes identified by sequence analysis in the aldolase B gene. Three of these are missense mutations (g.6846T>C, g.10236G>T, g.10258T>C), one is a nonsense mutation (g.8187C>T) and two affect splicing sites (g.8180G>C and g.10196A>G). We have expressed in bacterial cells the recombinant proteins corresponding to the g.6846T>C (p.I74T), g.10236G>T (p.V222F), and g.10258T>C (p.L229P) natural mutants to study their effect on aldolase B function and structure. All the new variants were insoluble; molecular graphics data suggest this is due to impaired folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.