The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near‐surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open‐loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS‐only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE‐only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root‐zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE‐derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.
[1] We describe results of a project known as OptIC (Optimisation InterComparison) for comparison of parameter estimation methods in terrestrial biogeochemical models. A highly simplified test model was used to generate pseudo-data to which noise with different characteristics was added. Participants in the OptIC project were asked to estimate the model parameters used to generate this data, and to predict model variables into the future. Ten participants contributed results using one of the following methods: Levenberg-Marquardt, adjoint, Kalman filter, Markov chain Monte Carlo and genetic algorithm. Methods differed in how they locate the minimum (gradient-descent or global search), how observations are processed (all at once sequentially), or the number of iterations used, or assumptions about the statistics (some methods assume Gaussian probability density functions; others do not). We found the different methods equally successful at estimating the parameters in our application. The biggest variation in parameter estimates arose from the choice of cost function, not the choice of optimization method. Relatively poor results were obtained when the model-data mismatch in the cost function included weights that were instantaneously dependent on noisy observations. This was the case even when the magnitude of residuals varied with the magnitude of observations. Missing data caused estimates to be more scattered, and the uncertainty of predictions increased correspondingly. All methods gave biased results when the noise was temporally correlated or non-Gaussian, or when incorrect model forcing was used. Our results highlight the need for care in choosing the error model in any optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.