We propose an ensemble learning methodology to forecast the future US GDP growth release. Our approach combines a Recurrent Neural Network (RNN) with a Dynamic Factor model accounting for time-variation in mean with a Generalized Autoregressive Score (DFM-GAS). The analysis is based on a set of predictors encompassing a wide range of variables measured at different frequencies. The forecast exercise is aimed at evaluating the predictive ability of each model's component of the ensemble by considering variations in mean, potentially caused by recessions affecting the economy. Thus, we show how the combination of RNN and DFM-GAS improves forecasts of the US GDP growth rate in the aftermath of the 2008-09 global financial crisis. We find that a neural network ensemble markedly reduces the root mean squared error for the short-term forecast horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.