Gracia-Lor, E. et al. (2017) Measuring biomarkers in wastewater as a new source of epidemiological information: current state and future perspectives. Environment International, 99, pp. 131-150. (doi:10.1016International, 99, pp. 131-150. (doi:10. /j.envint.2016 This is the author's final accepted version.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.http://eprints.gla.ac.uk/133949/
The plasticizer bisphenol-A (BPA) is common to municipal wastewaters and can exert toxicity to exposed organisms in the environment. Here BPA concentration at 5 sewage treatment works (STW) and distribution throughout a river catchment in South West UK were investigated. Sampling sites included influent and effluent wastewater (n=5), river water (n=7) and digested sludge (n=2) which were monitored for 7 consecutive days. Findings revealed average BPA loads in influent wastewater at two STWs were 10-37 times greater than the other wastewaters monitored. Concentrations up to ~100 µg L-1 were measured considerably higher than previously reported for municipal wastewaters. Temporal variability throughout the week (i.e., highest concentrations during weekdays) suggests these high concentration are linked with industrial activity. Despite ≥90 % removal during wastewater treatment, notable concentrations remained in tested effluent (62-892 ng L-1). However, minimal impact on BPA concentrations in river water was observed for any of the effluents. The maximum BPA concentration found in river water was 117 ng L-1 which is considerably lower than the current predicted no effect concentration of 1.6 µg L-1. Nevertheless, analysis of digested sludge from sites which received these elevated BPA levels revealed average concentrations of 4.6±0.3 and 38.7±5.4 µg g-1. These sludge BPA concentrations are considerably greater than previously reported
This study provides an insight into the prevalence of (fluoro)quinolones (FQs) and their specific quinolone qnrS resistance gene in the aquatic environment from the Avon river catchment area receiving treated wastewater from 5 wastewater treatment plants (WWTPs), serving 1.5 million people and accounting for 75% of inhabitants living in the catchment area in the South West of England. FQs were analysed by stereoselective chiral chromatography and tandem mass spectrometry and their specific qnrS resistance gene was measured with digital PCR, which allowed for spatiotemporal evaluation of the prevalence of FQs and qnrS across the catchment. Ofloxacin, ciprofloxacin, nalidixic acid and norfloxacin were found to be ubiquitous with daily loads reaching a few hundred g/day in wastewater influent and tens of g/day in receiving waters. This was in contrast to other FQs analysed: flumequine, nadifloxacin, lomefloxacin, ulifloxacin, prulifloxacin, besifloxacin and moxifloxacin, which were hardly quantified. Enantiomeric profiling revealed that ofloxacin was enriched with the S-(-)-enantiomer, likely deriving from its prescription as the more potent enantiomerically pure levofloxacin, alongside racemic ofloxacin. While ofloxacin's AS might be facilitating antimicrobial resistance (AMR) prevalence to higher extent than TF.Wastewater-based epidemiology (WBE) was also applied to monitor any potential misuse (e.g. direct disposal) of FQs in the catchment. In most cases higher use of antibiotics with respect to official statistics (i.e. ciprofloxacin, ofloxacin) was observed, which suggests that FQs management practice require further attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.