Previous studies have demonstrated that cerebral blood flow (CBF) can be assessed noninvasively by MRI using magnetic labeling of arterial water as a diffusible flow tracer. The purpose of this study was to assess the quality of CBF images obtained from patients with cerebrovascular disease using this method, and to begin to evaluate the potential clinical role for this technique. We recruited 14 patients who presented with stroke, TIA, or severe carotid stenosis and were likely to have altered CBF based on clinical assessment. In many of these patients, CBF imaging disclosed both focal and hemispheric hypoperfusion, either in vascular territories or in watershed regions. In 11 patients with significant proximal arterial stenosis, hemispheric CBF abnormalities localized to the side of most significant stenosis for the anterior circulation distribution. In several patients watershed hypoperfusion was even more pronounced. Our results suggest that good-quality MR CBF images can be obtained reliably from patients with cerebrovascular disease. CBF imaging can be combined with standard structural imaging within a single MRI examination, and provides clinically meaningful information. The capability of measuring CBF easily provides a potentially useful tool for clinical assessment and further investigation of stroke pathophysiology.
fMRI can be used to detect asymmetries in memory activation in patients with TLE. Because fMRI studies are noninvasive and provide excellent spatial resolution for functional activation, these preliminary results suggest a promising role for fMRI in improving the preoperative evaluation for epilepsy surgery.
Summary Purpose Post-traumatic epilepsy (PTE) occurs in a proportion of traumatic brain injury (TBI) cases, significantly compounding the disability, risk of injury, and death for sufferers. To date, predictive biomarkers for PTE have not been identified. This study used the lateral fluid percussion injury (LFPI) rat model of TBI to investigate whether structural, functional, and behavioral changes post-TBI relate to the later development of PTE. Methods Adult male Wistar rats underwent LFPI or sham-injury. Serial MR and PET imaging, and behavioral analyses were performed over six months post-injury. Rats were then implanted with recording electrodes and monitored for two consecutive weeks using video-EEG to assess for PTE. Of the LFPI rats, 52% (n=12) displayed spontaneous recurring seizures and/or epileptic discharges on the video-EEG recordings. Key findings MRI volumetric and signal analysis of changes in cortex, hippocampus, thalamus, and amygdala, 18F-FDG PET analysis of metabolic function, and behavioral analysis of cognitive and emotional changes, at one week, one month, three months, and six months post-LFPI, all failed to identify significant differences on univariate analysis between the epileptic and non-epileptic groups. However, hippocampal surface shape analysis using high dimensional mapping-large deformation identified significant changes in the ipsilateral hippocampus at one week post-injury relative to baseline that differed between rats that would go onto become epileptic versus those who did not. Furthermore, a multivariate logistic regression model that incorporated the one week, one month, and three month 18F-FDG PET parameters from the ipsilateral hippocampus was able to correctly predict the epileptic outcome in all of the LFPI cases. As such, these subtle changes in the ipsilateral hippocampus at acute phases after LFPI may be related to PTE and require further examination. Significance These findings suggest PTE may be independent of major structural, functional, and behavioral changes induced by TBI, and suggest more subtle abnormalities are likely involved. However, there are limitations associated with studying acquired epilepsies in animal models that must be considered when interpreting these results, in particular the failure to detect differences between the groups may be related to the limitations of properly identifying/separating the epileptic and non-epileptic animals into the correct group.
Stimulus repetition associates with neural activity reductions during tasks that elicit behavioral priming. Here we present direct evidence for a quantitative relation between neural activity reductions and behavioral priming. Fifty-four subjects performed a word classification task while being scanned with functional MRI. Activity reductions were found in multiple high-level cortical regions including those within the prefrontal cortex. Importantly, activity within several of these regions, including the prefrontal cortex, correlated with behavior such that greater activity reductions associated with faster performance. Whole-brain correlational analyses confirmed the observation of anatomic overlap between regions showing activity reductions and those showing direct brain–behavioral correlations. The finding of a quantitative relation between neural and behavioral effects in frontal regions suggests that repetition reduces frontally mediated processing in a manner that ultimately facilitates behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.