The main objectives of this study were to estimate the frequency of chronic maxillary sinusitis of dental origin, and to evaluate the microbiology of odontogenic and non-odontogenic chronic maxillary sinusitis. Aspirates from 59 patients with chronic maxillary sinusitis (47 non-odontogenic, 12 odontogenic), collected during a 3-year period, were microbiologically processed for aerobic and anaerobic bacteria. Moreover, antimicrobial susceptibility was evaluated in the isolated bacteria. In this study, 20 % of chronic maxillary sinusitis cases were associated with a dental origin, and sinus lift procedures were the main aetiological factor. Our microbiological findings showed that all specimens from chronic maxillary sinusitis were polymicrobial. Sixty aerobes and 75 anaerobes were recovered from the 47 cases of non-odontogenic sinusitis (2.9 bacteria per specimen); 15 aerobes and 25 anaerobes were isolated from the 12 patients with odontogenic sinusitis (3.3 bacteria per specimen). The predominant aerobes were Staphylococcus aureus (27) and Streptococcus pneumoniae (16), while the more frequent anaerobes were Peptostreptococcus species (31) and Prevotella species (30). Haemophilus influenzae and Moraxella catarrhalis were absent in sinusitis associated with a dental origin. Overall, 22 % of Staphylococcus aureus isolates were oxacillin-resistant, and 75 % of Streptococcus pneumoniae isolates were penicillin-resistant and/or erythromycin-resistant; 21 % of anaerobic Gram-positive bacteria were penicillin-resistant, and 44 % of anaerobic Gram-negative bacteria were blactamase-positive. Vancomycin and quinopristin-dalfopristin had the highest in vitro activity against Staphylococcus aureus and Streptococcus species, respectively; amoxicillin-clavulanate and cefotaxime showed the highest in vitro activity against aerobic Gram-negative bacteria; and moxifloxacin, metronidazole and clindamycin were the most active against anaerobic bacteria.
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Ménière's disease (MD) is characterized by the triad of fluctuating hearing loss, episodic vertigo and tinnitus, and by endolymphatic hydrops found on post-mortem examination. Increasing evidence suggests that oxidative stress is involved in the development of endolymphatic hydrops and that cellular damage and apoptotic cell death might contribute to the sensorineural hearing loss found in later stages of MD. While excess reactive oxygen species (ROS) are toxic, regulated ROS, however, play an important role in cellular signaling. The ability of a cell to counteract stressful conditions, known as cellular stress response, requires the activation of pro-survival pathways and the production of molecules with anti-oxidant, anti-apoptotic or pro-apoptotic activities. Among the cellular pathways conferring protection against oxidative stress, a key role is played by vitagenes, which include heat shock proteins (Hsps) as well as the thioredoxin/thioredoxin reductase system. In this study we tested the hypothesis that in MD patients measurable increases in markers of cellular stress response and oxidative stress in peripheral blood are present. This study also explores the hypothesis that changes in the redox status of glutathione, the major endogenous antioxidant, associated with abnormal expression and activity of carbonic anhydrase can contribute to increase oxidative stress and to disruption of systemic redox homeostasis which can be associated to possible alterations on vulnerable neurons such as spiral ganglion neurons and consequent cellular degeneration. We therefore evaluated systemic oxidative stress and cellular stress response in patients suffering from Meniere's disease (MD) and in age-matched healthy subjects. Systemic oxidative stress was estimated by measuring protein oxidation, such as protein carbonyls (PC) and 4-hydroxynonenal (HNE) in lymphocytes of MD patients, as well as ultraweak luminescence (UCL) as end-stable products of lipid oxidation in MD plasma and lymphocytes, as compared to age-matched controls, whereas heat shock proteins Hsp70 and thioredoxin (Trx) expression were measured in lymphocytes to evaluate the systemic cellular stress response. Increased levels of PC (P < 0.01) and HNE (P < 0.05) have been found in lymphocytes from MD patients with respect to control group. This was paralleled by a significant induction of Hsp70, and a decreased expression of Trx (P < 0.01), whereas a significant decrease in both plasma and lymphocyte ratio reduced glutathione GSH) vs. oxidized glutathione (GSSG) (P < 0.05) were also observed. In conclusion, patients affected by MD are under condition of systemic oxidative stress and the induction of vitagenes Hsp70 is a maintained response in counteracting the intracellular pro-oxidant status generated by decreased content of GSH as well as expression of Trx. The search for novel and more potent inducers of vitagenes will facilitate the development of pharmacological strategies to increase the intrinsic capacity of vulnerable ganglion cells to maximize antid...
The present study compares the efficacy and safety of betahistine dihydrochloride to that of a placebo in recurrent vertigo resulting from Meniere's disease (MD) or in paroxysmal positional vertigo (PPV) of probable vascular origin. The design was double-blind, multicentre and parallel-group randomised. Eleven Italian cen-tres enrolled 144 patients: 75 of the patients were treated with betahistine (41 MD/34 PPV) and 69 with placebos (40 MD/29 PPV). The betahistine dosage was 16 mg twice per day for 3 months. Compared to the placebo, betahistine had a significant effect on the frequency, intensity and duration of vertigo attacks. Associated symptoms and the quality of life also were significantly improved by betahistine. Both the physician's judgement and the patient's opinion on the efficacy and acceptability of the treatment were in agreement as to the superiority of betahistine. The effective and safe profile of betahistine in the treatment of vertigo due to peripheral vestibular disorders was confirmed.
BackgroundThere has been a recent upsurge of interest in complementary medicine, especially dietary supplements and foods functional in delaying the onset of age-associated neurodegenerative diseases. Mushrooms have long been used in traditional medicine for thousands of years, being now increasingly recognized as antitumor, antioxidant, antiviral, antibacterial and hepatoprotective agent also capable to stimulate host immune responses.ResultsHere we provide evidence of neuroprotective action of Hericium Herinaceus when administered orally to rat. Expression of Lipoxin A4 (LXA4) was measured in different brain regions after oral administration of a biomass Hericium preparation, given for 3 month. LXA4 up-regulation was associated with an increased content of redox sensitive proteins involved in cellular stress response, such as Hsp72, Heme oxygenase −1 and Thioredoxin. In the brain of rats receiving Hericium, maximum induction of LXA4 was observed in cortex, and hippocampus followed by substantia Nigra, striatum and cerebellum. Increasing evidence supports the notion that oxidative stress-driven neuroinflammation is a fundamental cause in neurodegenerative diseases. As prominent intracellular redox system involved in neuroprotection, the vitagene system is emerging as a neurohormetic potential target for novel cytoprotective interventions. Vitagenes encode for cytoprotective heat shock proteins 70, heme oxygenase-1, thioredoxin and Lipoxin A4. Emerging interest is now focussing on molecules capable of activating the vitagene system as novel therapeutic target to minimize deleterious consequences associated with free radical-induced cell damage, such as in neurodegeneration. LXA4 is an emerging endogenous eicosanoid able to promote resolution of inflammation, acting as an endogenous “braking signal” in the inflammatory process. In addition, Hsp system is emerging as key pathway for modulation to prevent neuronal dysfunction, caused by protein misfolding.ConclusionsConceivably, activation of LXA4 signaling and modulation of stress responsive vitagene proteins could serve as a potential therapeutic target for AD-related inflammation and neurodegenerative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.