This article summarizes our effort, since 2004 up to the present time, for improving the current industrial Systems-on-Chip and Embedded Systems design by joining the capabilities of the unified modeling language (UML) and SystemC/C programming languages to operate at system-level. The proposed approach exploits the OMG model-driven architecture-a framework for Model-driven Engineering-capabilities of reducing abstract, coarse-grained and platform-independent system models to fine-grained and platform-specific models. We first defined a design methodology and a development flow for the hardware, based on a SystemC UML profile and encompassing different levels of abstraction. We then included a multithread C UML profile for modelling software applications. Both SystemC/C profiles are consistent sets of modelling constructs designed to lift the programming features (both structural and behavioral) of the two coding languages to the UML modeling level. The new codesign flow is supported by an environment, which allows system modeling at higher abstraction levels (from a functional executable level to a register transfer level) and supports automatic code-generation/back-annotation from/to UML models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.