Rustichini, and Tom Sargent, for some very useful comments. Part of this research was done while some of the authors were visiting the Economics Department of Boston University and the Collegio Carlo Alberto, which they thank for their hospitality.
When there is uncertainty about interest rates (typically due to either illiquidity or defaultability of zero coupon bonds) the cash-additivity assumption on risk measures becomes problematic. When this assumption is weakened, to cash-subadditivity for example, the equivalence between convexity and the diversification principle no longer holds. In fact, this principle only implies (and it is implied by) quasiconvexity. For this reason, in this paper quasiconvex risk measures are studied. We provide a dual characterization of quasiconvex cash-subadditive risk measures and we establish necessary and sufficient conditions for their law invariance. As a byproduct, we obtain an alternative characterization of the actuarial mean value premium principle.
The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we present an explicit form of the Riemannian metrics on positivedefinite matrices and compute its tensor form with respect to the trace inner product. The tensor is a matrix which is the solution to a Lyapunov equation. We compute the explicit formula for the Riemannian exponential, the normal coordinates charts and the Riemannian gradient. Finally, the Levi-Civita covariant derivative is computed in matrix form together with the differential equation for the parallel transport. While all computations are given in matrix form, nonetheless we discuss also the use of a special moving frame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.