Over the last few years, the convincing forward steps in the development of Internet-of-Things (IoT) enabling solutions are spurring the advent of novel and fascinating applications. Among others, mainly Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile technologies are leading this evolutionary trend.In the wake of this tendency, this paper proposes a novel, IoTaware, smart architecture for automatic monitoring and tracking of patients, personnel, and biomedical devices within hospitals and nursing institutes. Staying true to the IoT vision, we propose a Smart Hospital System (SHS) which relies on different, yet complementary, technologies, specifically RFID, WSN, and smart mobile, interoperating with each other through a CoAP/6LoWPAN/REST network infrastructure. The SHS is able to collect, in real time, both environmental conditions and patients' physiological parameters via an ultra-low-power Hybrid Sensing Network (HSN) composed of 6LoWPAN nodes integrating UHF RFID functionalities. Sensed data are delivered to a control center where an advanced monitoring application makes them easily accessible by both local and remote users via a REST web service. The simple proof of concept implemented to validate the proposed SHS has highlighted a number of key capabilities and aspects of novelty which represent a significant step forward compared to the actual state of art. support and improve healthcare and biomedical-related processes [2]. Automatic identification and tracking of people and biomedical devices in hospitals, correct drug-patient associations, real-time monitoring of patients' physiological parameters for early detection of clinical deterioration are only a few of the possible examples.Among others, Ultra-High-Frequency (UHF) Radio Frequency Identification (RFID), Wireless Sensor Network (WSN), and smart mobile represent three of the most promising technologies enabling the implementation of smart healthcare systems. RFID is a low-cost, low-power technology consisting of passive and/or battery-assisted passive (BAP) devices, named tags, which are able to transmit data when powered by the electromagnetic field generated by an interrogator, named reader. Since passive RFID tags do not need a source of energy to operate, their lifetime can be measured in decades, thus making the RFID technology well suited in a variety of application scenarios, including the healthcare one [3]- [5]. The recent availability of UHF RFID tags with increased capabilities, e.g. sensing and computation [6]-[8], represents a further added value. In fact, RFID-based sensing in healthcare enables zero-power, low-cost, and easyto-implement monitoring and transmission of patients' physiological parameters. Nevertheless, the main drawback of RFID tags stems from the fact that they can operate solely under the reader coverage region, i.e. up to 15 m and 25 m when respectively fully-passive and BAP tags are used. Clearly, such an aspect limits the use of UHF RFID technology to object/patient identific...
The rapid development and implementation of smart and IoT (Internet of Things) based technologies have allowed for various possibilities in technological advancements for different aspects of life. The main goal of IoT technologies is to simplify processes in different fields, to ensure a better efficiency of systems (technologies or specific processes) and finally to improve life quality. Sustainability has become a key issue for population where the dynamic development of IoT technologies is bringing different useful benefits, but this fast development must be carefully monitored and evaluated from an environmental point of view to limit the presence of harmful impacts and ensure the smart utilization of limited global resources. Significant research efforts are needed in the previous sense to carefully investigate the pros and cons of IoT technologies. This review editorial is partially directed on the research contributions presented at the 4th International Conference on Smart and Sustainable Technologies held in Split and Bol, Croatia, in 2019 (SpliTech 2019) as well as on recent findings from literature. The SpliTech2019 conference was a valuable event that successfully linked different engineering professions, industrial experts and finally researchers from academia. The focus of the conference was directed towards key conference tracks such as Smart City, Energy/Environment, e-Health and Engineering Modelling. The research presented and discussed at the SpliTech2019 conference helped to understand the complex and intertwined effects of IoT technologies on societies and their potential effects on sustainability in general. Various application areas of IoT technologies were discussed as well as the progress made. Four main topical areas were discussed in the herein editorial, i.e. latest advancements in the further fields: (i) IoT technologies in Sustainable Energy and Environment, (ii) IoT enabled Smart City, (iii) E-health – Ambient assisted living systems (iv) IoT technologies in Transportation and Low Carbon Products. The main outcomes of the review introductory article contributed to the better understanding of current technological progress in IoT application areas as well as the environmental implications linked with the increased application of IoT products.
This paper aims to provide the reader with a review of the main technologies explored in the literature to solve the indoor localization issue. Furthermore, some systems that use these enabling technologies in real-world scenarios are presented and discussed. This could deliver a better understanding of the state-of-the-art and motivate new research efforts in this promising field. Finally, focusing on one of the major challenges in the indoor localization field, i.e., the indoor animal tracking, existing indoor tracking systems have been reviewed and compared by analyzing advantages and drawbacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.