The occurrence of human pathogenic viruses in aquatic ecosystems and, in particular, in internal water bodies (i.e., river, lakes, groundwater, drinking water reservoirs, recreational water utilities, and wastewater), raises concerns regarding the related impacts on environment and human health, especially in relation to the possibility of human exposure and waterborne infections.
This paper reviews the current state of knowledge regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presence and persistence in human excreta, wastewaters, sewage sludge as well as in natural water bodies, and the possible implications for water services in terms of fecal transmission, public health, and workers’ risk. Furthermore, the impacts related to the adopted containment and emergency management measures on household water consumptions are also discussed, together with the potential use of wastewater-based epidemiology (WBE) assessment as a monitoring and early warning tool to be applied in case of infectious disease outbreaks.
The knowledge and tools summarized in this paper provide a basic information reference supporting decisions makers in the definition of suitable measures able to pursue an efficient water and wastewater management and a reduction of health risks. Furthermore, research questions are provided in order to address technical and public health communities towards a sustainable water service management in the event of a SARS-CoV-2 re-emergence, as well as a future deadly outbreak or pandemic.
Abstract:In order to reach the Millennium Development Goals for significantly reducing the number of people without access to adequate sanitation, new holistic concepts are needed focusing on economically feasible closed-loop ecological sanitation systems rather than on expensive end-of-pipe technologies. An analysis of a former civilization in the Amazon (nowadays Brazil) highlights the possibility to close the loop with a more sustainable lifestyle integrating soil fertility, food security, waste management, water protection and sanitation, renewable energy. Terra Preta do Indio is the anthropogenic black soil produced by ancient cultures through the conversion of bio-waste, fecal matter and charcoal into long-term fertile soils. These soils have maintained high amounts of organic carbon several thousand years after they were abandoned. Deriving from these concepts, Terra Preta Sanitation (TPS) has been re-developed and adopted. TPS includes urine diversion, addition of a charcoal mixture and is based on lactic-acid-fermentation with subsequent vermicomposting. Lacto-fermentation is a biological anaerobic process that generates a pre-stabilization of the mixture. The main advantage of lacto-fermentation is that no gas and no odor is produced. What makes it particularly interesting for in-house systems even in urban areas. Instead, vermicomposting is an aerobic decomposition process of the pre-digested materials by the combined action of earthworms and microorganisms. It transforms the carbon and nutrients into the deep black, fertile and stable soil that can be utilized in agriculture. No water, ventilation or external energy is OPEN ACCESS Sustainability 2014, 6 1329 required. Starting from ancient Amazonian civilizations traditional knowledge, the aim of this work is to present TPS systems adopted nowadays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.