Photochemoprevention can be a valuable approach to counteract the damaging effects of environmental stressors (e.g., UV radiations) on the skin. Pigments are bioactive molecules, greatly attractive for biotechnological purposes, and with promising applications for human health. In this context, marine microalgae are a valuable alternative and eco-sustainable source of pigments that still need to be taken advantage of. In this study, a comparative in vitro photochemopreventive effects of twenty marine pigments on carcinogenic melanoma model cell B16F0 from UV-induced injury was setup. Pigment modulation of the intracellular reactive oxygen species (ROS) concentration and extracellular release of nitric oxide (NO) was investigated. At the cell signaling level, interleukin 1-β (IL-1β) and matrix metallopeptidase 9 protein (MMP-9) protein expression was examined. These processes are known to be involved in the signaling pathway, from UV stress to cancer induction. Diatoxanthin resulted the best performing pigment in lowering MMP-9 levels and was able to strongly lower IL-1β. This study highlights the pronounced bioactivity of the exclusively aquatic carotenoid diatoxanthin, among the others. It is suggested increasing research efforts on this molecule, emphasizing that a deeper integration of plant ecophysiological studies into a biotechnological context could improve the exploration and exploitation of bioactive natural products.
Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.
Contact between SARS-CoV-2 and human lung cells involves the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor on epithelial cells, the latter being strongly involved in the regulation of inflammation as well as blood pressure homeostasis. SARS-CoV-2 infection is characterized by a strong inflammatory response defined as a “cytokine storm”. Among recent therapeutic approaches against SARS-CoV-2 targeting the dramatic inflammatory reaction, some natural products are promising. Diatoms are microalgae able to produce bioactive secondary metabolites, such as the xanthophyll diatoxanthin (Dt). The aim of this study is to demonstrate the anti-inflammatory effects of Dt on the A549-hACE2 lung cell line, exploring its interaction with the ACE2 receptor, as well as depicting its role in inhibiting a cytokine storm induced by the SARS-CoV-2 spike glycoprotein. Results showed that Dt enhanced the cell metabolism, e.g., the percent of metabolically active cells, as well as the ACE2 enzymatic activity. Moreover, Dt strongly affected the response of the SARS-CoV-2 spike glycoprotein-exposed A549-hACE2 cells in decreasing the interleukin-6 production and increasing the interleukin-10 release. Moreover, Dt upregulated genes encoding for the interferon pathway related to antiviral defense and enhanced proteins belonging to the innate immunity response. The potential interest of Dt as a new therapeutic agent in the treatment and/or prevention of the severe inflammatory syndrome related to SARS-CoV-2 infection is postulated.
The extracellular microenvironment proved to exert a potent regulatory effect over different aspects of Embryonic Stem Cells (ESCs) behavior. In particular, the employment of engineered culture surfaces aimed at modulating ESC self-organization resulted effective in directing ESCs toward specific fate decision. ESCs fluctuate among different levels of functional potency and in this context the Zscan4 gene marks the so-called "metastate," a cellular state in which ESCs retain both self-renewal and pluripotency capabilities. Here we investigated the impact of topographic cues on ESCs pluripotency, differentiation and organization capabilities. To this aim, we engineered culturing platforms of nanograted surfaces with different features size and we investigated their impact on ESCs multicellular organization and Zscan4 gene expression. We showed that the morphology of ESC-derived aggregates and Zscan4 expression are strictly intertwined. Our data suggest that ESC Zscan4 metastate can be promoted if the adhesive surface conditions guide cellular self-aggregation into 3D dome-like structure, in which both cell-material interactions and cell-cell contact are supportive for Zscan4 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.