OBJECTIVE: To ascertain in obesity the role of body fat distribution (the strongest predictor of morbility and mortality in obese subjects) in determining the degree of endothelial dysfunction, an early marker of atherosclerotic disease. SUBJECTS: 18 premenopausal women with uncomplicated obesity excluding other cardiovascular risk factors and 12 age-matched slim healthy women. MEASUREMENTS: Endothelium-dependent vasodilation, studied as diameter variation in response to an increase in shear-stress, was evaluated in the right common femoral artery of obese and slim subjects by a non invasive approach and compared to glyceril-trinitrate vasodilation. To characterize better the vascular functional andaor structural properties, we studied the arterial wall distensibility by an echo-tracking system. Adipose tissue regional distribution was determined by computerised axial tomography. RESULTS: The endothelium-dependent vasodilation was signi®cantly impaired in obese subjects (P`0.005 versus non-obese subjects) while glyceril-trinitrate vasodilation and arterial distensibility were similar in the two groups. In our obese subjects endothelial-dependent vasodilation was inversely correlated to body fat distribution (visceralasubcutaneous adipose tissue ratio: r À0.624, P 0.0058). In contrast, metabolic parameters (except C-peptide response during oral glucose tolerance test (OGTT): r À0.587, P 0.01), blood pressure values and body weight did not correlate with the endothelial function. CONCLUSION: Uncomplicated obesity per se is characterised by an alteration of the endothelial function; the degree of this vascular damage is predicted by body fat distribution independently of body weight and metabolic and other haemodynamic parameters, and correlates with an index of insulin secretion.
Breast cancer is a heterogeneous disease, encompassing a large number of entities showing different morphological features and having clinical behaviors. It has became apparent that this diversity may be justified by distinct patterns of genetic, epigenetic, and transcriptomic aberrations. The identification of gene-expression microarray-based characteristics has led to the identification of at least five breast cancer subgroups: luminal A, luminal B, normal breast-like, human epidermal growth factor receptor 2, and basal-like. Triple-negative breast cancer is a complex disease diagnosed by immunohistochemistry, and it is characterized by malignant cells not expressing estrogen receptors or progesterone receptors at all, and human epidermal growth factor receptor 2. Along with this knowledge, recent data show that triple-negative breast cancer has specific molecular features that could be possible targets for new biological targeted drugs. The aim of this article is to explore the use of new drugs in this particular setting, which is still associated with poor prognosis and high risk of distant recurrence and death.
Originally, colorectal cancer (CRC) tumorigenesis was understood as a multistep process that involved accumulation of tumor suppressor genes and oncogenes mutations, such as APC, TP53 and KRAS. However, this assumption proposed a relatively limited repertoire of genetic alterations. In the last decade, there have been major advances in knowledge of multiple molecular pathways involved in CRC pathogenesis, particularly regarding cytogenetic and epigenetic events. Microsatellite instability, chromosomal instability and CpG island methylator phenotype are the most analyzed cytogenetic changes, while DNA methylation, modifications in histone proteins and microRNAs (miRNAs) were analyzed in the field of epigenetic alterations. Therefore, CRC development results from interactions at many levels between genetic and epigenetic amendments. Furthermore, hereditary cancer syndrome and individual or environmental risk factors should not be ignored. The difficulties in this setting are addressed to understand the molecular basis of individual susceptibility to CRC and to determine the roles of genetic and epigenetic alterations, in order to yield more effective prevention strategies in CRC patients and directing their treatment. This review summarizes the most investigated biomolecular pathways involved in CRC pathogenesis, their role as biomarkers for early CRC diagnosis and their possible use to stratify susceptible patients into appropriate screening or surveillance programs.
Hepatocellular carcinoma (HCC) is the most common malignant hepatobiliary disease; it is responsible for about 1 million deaths per year. Risk factors include hepatitis B and C, hepatic cirrhosis, including alcohol related hepatitis, metabolic and nutritional hepatic damage. The main modality of diffusion is intrahepatic in the natural course of the disease. There are two leading types of treatment: local and systemic. Surgical resection and liver transplantation constitute the most appropriate local treatments and are considered the only real possibility for recovery. Other local approaches include: radiofrequency ablation, percutaneous ethanol ablation, hepatic endoarterial chemoembolization and intrahepatic radiotherapy (SIRT: selective internal radiation therapy). These last treatments are used to control the disease when surgery or transplantation is not achievable; in some cases they are able to prolong survival while they constitute mainly a palliative treatment. Systemic treatments include: chemotherapy, immunological and hormonal therapies and, more recently, the introduction of new specific molecular target drugs. At the moment, in this group, the only drug that has given positive results during phase III trials (SHARP study) is Sorafenib. Sorafenib represents the only primary systemic therapy that has demonstrated, unlike the other treatments previously described, an increase in survival rate in patients affected with advanced HCC. Currently, other studies are taking place that are further developing the potential of this drug. These studies, including phase III trials, are directed in order to test the activity and safety of new emerging drugs with targeted activity. Examples of these new agents are: Sunitinib, Gefitinib, Cetuximab, Bevacizumab and Erlotinib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.