Exposure to cadmium (Cd 2+ ) can result in cell death, but the molecular mechanisms of Cd 2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 mM CdCl 2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl 2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by N G -monomethylarginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd 2+ -induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd 2+ cytotoxicity in plants.
Durum wheat plants (Triticum durum cv Creso) were grown in the presence of cadmium (0-40 microM) and analysed after 3 and 7 d for their growth, oxidative stress markers, phytochelatins, and enzymes and metabolites of the ascorbate (ASC)-glutathione (GSH) cycle. Cd exposure produced a dose-dependent inhibition of growth in both roots and leaves. Lipid peroxidation, protein oxidation and the decrease in the ascorbate redox state indicate the presence of oxidative stress in the roots, where H2O2 overproduction and phytochelatin synthesis also occurred. The activity of the ASC-GSH cycle enzymes significantly increased in roots. Consistently, a dose-dependent accumulation of Cd was evident in these organs. On the other hand, no oxidative stress symptoms or phytochelatin synthesis occurred in the leaves; where, at least during the time of our analysis, the levels of Cd remained irrelevant. In spite of this, enzymes of the ASC-GSH cycle significantly increased their activity in the leaves. When ASC biosynthesis was enhanced, by feeding plants with its last precursor, L-galactono-gamma-lactone (GL), Cd uptake was not affected. On the other hand, the oxidative stress induced in the roots by the heavy metal was alleviated. GL treatment also inhibited the Cd-dependent phytochelatin biosynthesis. These results suggest that different strategies can successfully cope with heavy metal toxicity. The changes that occurred in the ASC-GSH cycle enzymes of the leaves also suggest that the whole plant improved its antioxidant defense, even in those parts which had not yet been reached by Cd. This precocious increase in the enzymes of the ASC-GSH cycle further highlight the tight regulation and the relevance of this cycle in the defense against heavy metals.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd(2+) tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd(2+) accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd(2+) accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd(2+) translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd(2+) tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd(2+) transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.