This review reports the recent state of the art in the field of mobile robots applied to precision agriculture. After a brief introduction to precision agriculture, the review focuses on two main topics. First, it provides a broad overview of the most widely used technologies in agriculture related to crop, field, and soil monitoring. Second, the main robotic solutions, with a focus on land-based robots, and their salient features are described. Finally, a short case study about a robot developed by the authors is introduced. This work aims to collect and highlight the most significant trends in research on robotics applied to agriculture. This review shows that the most studied perception solutions are those based on vision and cloud point detection and, following the same trend, most robotic solutions are small robots dedicated exclusively to monitoring tasks. However, the robotisation of other agricultural tasks is growing.
The use of automation and robotics technologies for caregiving and assistance has become a very interesting research topic in the field of robotics. The spread of COVID-19 has highlighted the importance of social distancing in hospitals and health centers, and collaborative robotics can bring substantial improvements in terms of sparing health workers basic operations. Thus, researchers from Politecnico di Torino are working on Paquitop.arm, a mobile robot for assistive tasks. The purpose of this paper is to present a system composed of an omnidirectional mobile platform, a 6 DOF robot arm, and a depth camera. Task-oriented considerations are made to estimate a set of mounting parameters that represents a trade-off between the exploitation of the robot arm workspace and the compactness of the entire system. To this end, dexterity and force transmission indexes are introduced to study both the kinematic and the static behavior of the manipulator as a function of the mounting parameters. Finally, to avoid singularities during the execution of the task, the platform approach to the task workspaces is studied.
The general and constant ageing of the world population that has been observed in the last decade has led robotics researchers community to focus its aims to answer the ever-growing demand for health care, housing, care-giving, and social security. Among others, the researchers at Politecnico di Torino are developing a novel platform to enhance the performance offered by present-day issues, and to assess many others which were not even taken into consideration before they have been highlighted by the pandemic emergency currently in progress. This situation, in fact, made dramatically clear how important it is to have reliable non-human operators whom one can trust when the life of elderly or weak patients is endangered by the simple presence of other people. The platform, named Paquitop, features an innovative architecture conceived for omni-directional planar motion. The machine is designed for domestic, unstructured, and variously populated environments. Therefore, the mobile robot should be able to avoid or pass over small obstacles, passing through the capability to achieve specific person tracking tasks, and arriving to the need of operating with an high dynamic performance. Given its purpose, this work addresses the design of the suspension system which enables the platform to ensure a steady floor contact and adequate stability in every using condition. Different configurations of such system are then presented and compared through use-case simulations.
In the last decades, mobile robotics has become a very interesting research topic in the field of robotics, mainly because of population ageing and the recent pandemic emergency caused by Covid-19. Against this context, the paper presents an overview on wheeled mobile robot (WMR), which have a central role in nowadays scenario. In particular, the paper describes the most commonly adopted locomotion strategies, perception systems, control architectures and navigation approaches. After having analyzed the state of the art, this paper focuses on the kinematics of three omnidirectional platforms: a four mecanum wheels robot (4WD), a three omni wheel platform (3WD) and a two swerve-drive system (2SWD). Through a dimensionless approach, these three platforms are compared to understand how their mobility is affected by the wheel speed limitations that are present in every practical application. This original comparison has not been already presented by the literature and it can be used to improve our understanding of the kinematics of these mobile robots and to guide the selection of the most appropriate locomotion system according to the specific application.
Population aging and pandemics have been shown to cause the isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants, there are no platforms that successfully combine reliable mobility in cluttered domestic spaces with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared to previous works, we propose a tiny omnidirectional platform, which enables agile mobility and effective obstacle avoidance. Moreover, we design a controllable positioning device, which easily allows the user to access the interface for connectivity and extends the visual range of the camera sensor. Nonetheless, we delicately consider the privacy issues arising from private data collection on cloud services, a critical aspect of commercial AI-based assistants. To this end, we demonstrate how lightweight deep learning solutions for visual perception and vocal command can be adopted, completely running offline on the embedded hardware of the robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.