A novel B-cell-specific transcription factor, BSAP, was identified as a mammalian homolog of the sea urchin protein TSAP, which interacts with the promoters of four tissue-specific late histone H2A-2 and H2B-2 genes. As shown by mobility-shift, methylation interference, and mutational analyses, the mammalian protein BSAP recognizes all four sea urchin binding sites in a manner indistinguishable from TSAP; however, the two proteins differ in molecular weight. BSAP is exclusively restricted to the B-cell lineage of lymphoid differentiation. Its expression appears to be activated during pro-B-cell development, is abundant at the pre-Band mature B-cell stages, but is absent in terminally differentiated plasma cells. Moreover, BSAP is clearly a Bcell-specific transcription factor, as a wild-type but not a mutant TSAP-binding site of the sea urchin functions only in transfected B cells as an upstream promoter element. Competition experiments did not reveal any high-affinity binding site for BSAP in known regulatory regions of immunoglobulin and class II major histocompatibility (MHC) genes, suggesting that BSAP is a regulator of a different set of B-lymphoid-specific genes.
We have identified a novel transcription factor that interacts with the promoter of four tissue-specific late histone H2A-2 and H2B-2 genes of the sea urchin by DNase I footprint, mobility shift, and methylation interference analyses. The binding site for this factor is required for efficient transcription of the H2B-2.1 gene both in vitro in nuclear extracts of gastrula embryos and in vivo in microinjected sea urchin embryos. This factor binds with equal affinity to the recognition sequences of all four histone genes in cross-competition assays. Moreover, the binding site of the H2B-2.2 promoter can functionally substitute for that of the H2B-2.1 gene in in vivo expression experiments. Nevertheless, all four binding sites share little sequence homology with each other. This transcription factor increases in abundance during embryogenesis and has been detected in the adult sea urchin only in the tube feet, where the late H2A-2 and H2B-2 genes are expressed specifically. Therefore, we refer to this factor as tissue-specific activator protein (TSAP). The close correlation between the presence of TSAP and the expression pattern of the late H2A-2 and H2B-2 genes suggests that this transcription factor is directly responsible for the developmental and tissue-specific regulation of these genes.
We have evaluated the effects of the flt3 receptor ligand (FL) on hematopoietic progenitors/stem cells (HPCs/HSCs) stringently purified from adult peripheral blood and grown in different culture systems. In these experiments HPCs/HSCs were treated with FL +/- kit ligand (KL) +/- monocyte colony-stimulatory factor (M-CSF). In clonogenetic HPC culture supplemented with interleukin-3 (IL-3)/granulomonocyte-CSF (GM- CSF)/erythropoietin (Epo), FL potentiates colony-forming unit (CFU)-GM proliferation in terms of colony number and size, but exerts little effect on burst-forming units-erythroid (BFU-E) and CFU-granulocyte erythroid megakaryocyte macrophage (CFU-GEMM) growth, whereas KL enhances the proliferation of all HPC types; combined FL+KL +/- M-CSF treatment causes a striking shift of CFU-GM colonies from granulocytic to monocytic differentiation. In liquid suspension HPC culture, FL alone induces differentiation along the monocytic and to a minor extent the basophilic lineages, whereas M-CSF alone stimulates prevalent monocytic differentiation but little cell proliferation: combined M- CSF+FL treatment causes both proliferation and almost exclusive monocytic differentiation (97% monocytes in fetal calf serum-rich (FCS+) culture conditions, mean value). At primitive HPC level, FL potentiates the clonogenetic capacity of colony-forming units-blast (CFU-B) and high proliferative potential colony-forming cells (HPP-CFC) in primary and secondary culture; KL exerts a similar action, and additive effects are induced by FL combined with KL. More important, addition of FL alone causes a significant amplification of the number of long-term culture-initiating cells (LTC-ICs), ie, putative repopulating HSCs, whereas this effect is not induced by KL. The FL effects correlate with flt3 mRNA expression in HPCs differentiating throught the erythroid or GM pathway in liquid suspension culture: (1) flt3 mRNA is expressed in freshly purified, resting HPCs; after growth factor stimulus the message (2) is abruptly down-modulated in HPC erythroid differentiation, but (3) is sustainedly expressed through HPC GM differentiation and abolished in GM precursor maturation. This pattern contrasts with the gradual downmodulation of c-kit through both erythroid and GM HPC differentiation. The results indicate that FL exerts a stimulatory action on primitive HPCs, including a unique expanding effect on putative stem cells, whereas its distal proliferative/differentiative action is largely restricted to CFU-GM and monocytic precursors. The latter effect is potentiated by KL and M- CSF, thus suggesting that the structural similarities of FL, KL, M-CSF, and their tyrosine kinase receptors may mediate positive interactions of these growth factors son monocytic differentiation.
Human proerythroblasts and early erythroblasts, generated in vitro by normal adult progenitors, contain a pentamer protein complex comprising the tal-1 transcription factor heterodimerized with the ubiquitous E2A protein and linked to Lmo2, Ldb1, and retinoblastoma protein (pRb). The pentamer can assemble on a consensus tal-1 binding site. In the pRb ؊ SAOS-2 cell line transiently transfected with a reporter plasmid containing six tal-1 binding site, pRb enhances the transcriptional activity of tal-1-E12-Lmo2 and tal-1-E12-Lmo2-Ldb1 complexes but not that of a tal-1-E12 heterodimer. We explored the functional significance of the pentamer in erythropoiesis, specifically, its transcriptional effect on the c-kit receptor, a tal-1 target gene stimulating early hematopoietic proliferation downmodulated in erythroblasts. In TF1 cells, the pentamer decreased the activity of the reporter plasmid containing the c-kit proximal promoter with two inverted E box-2 type motifs. In SAOS-2 cells the pentamer negatively regulates (i) the activity of the reporter plasmid containing the proximal human c-kit promoter and (ii) endogenous c-kit expression. In both cases pRb significantly potentiates the inhibitory effect of the tal-1-E12-Lmo2-Ldb1 tetramer. These data indicate that this pentameric complex assembled in maturing erythroblasts plays an important regulatory role in c-kit downmodulation; hypothetically, the complex may regulate the expression of other critical erythroid genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.