The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect.
Hamsters were fed for 4 weeks on four different diets: control (C) (balanced diet containing 20 % corn oil as the lipid source), hypercholesterolemic (H) (identical to C but containing 12 % coconut oil, 8 % corn oil and 0.1 % cholesterol as the lipid source), amaranth oil (A) (identical to H without corn oil but with amaranth oil), and squalene (S) (identical to H but admixed with squalene in the ratio found in amaranth oil). There were no significant differences in lipid profile, and in the cholesterol excreted in the animals' feces from amaranth oil (A) and squalene (S) groups. Fecal excretion of bile acids was greater in the amaranth oil (A) and squalene groups (S) as compared to the other groups. The scores of steatosis and parenchymal inflammation observed in the amaranth oil (A) and squalene groups (S) were superior to the ones observed in the other groups. Our findings demonstrated that amaranth oil, and its component squalene, increased the excretion of bile acids but did not have a hypocholesterolemic effect in hamsters fed on a diet containing high amounts of saturated fat and cholesterol.
São Paulo, ____ de _____________ de 2011.É expressamente proibida a comercialização deste documento, tanto na sua forma impressa como eletrônica. Sua reprodução total ou parcial é permitida exclusivamente para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da dissertação. AGRADECIMENTOSA Deus, autor da vida e fonte de toda sabedoria, aquele que me capacita e sustenta em todos os momentos da vida. Porque Dele, por Ele e para Ele são todas as coisas. A Ele seja a glória para sempre! (Romanos 11:36
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.