Abstract. This paper presents a new iris database that contains images with noise. This is in contrast with the existing databases, that are noise free. UBIRIS is a tool for the development of robust iris recognition algorithms for biometric proposes. We present a detailed description of the many characteristics of UBIRIS and a comparison of several image segmentation approaches used in the current iris segmentation methods where it is evident their small tolerance to noisy images.
The iris is regarded as one of the most useful traits for biometric recognition and the dissemination of nationwide iris-based recognition systems is imminent. However, currently deployed systems rely on heavy imaging constraints to capture near infrared images with enough quality. Also, all of the publicly available iris image databases contain data correspondent to such imaging constraints and therefore are exclusively suitable to evaluate methods thought to operate on these type of environments. The main purpose of this paper is to announce the availability of the UBIRIS.v2 database, a multisession iris images database which singularly contains data captured in the visible wavelength, at-a-distance (between four and eight meters) and on on-the-move. This database is freely available for researchers concerned about visible wavelength iris recognition and will be useful in accessing the feasibility and specifying the constraints of this type of biometric recognition.
An overview of the iris image segmentation methodologies for biometric purposes is presented. The main focus is on the analysis of the ability of segmentation algorithms to process images with heterogeneous characteristics, simulating the dynamics of a non-cooperative environment. The accuracy of the four selected methodologies on the UBIRIS database is tested and, having concluded about their weak robustness when dealing with non-optimal images regarding focus, reflections, brightness or eyelid obstruction, the authors introduce a new and more robust iris image segmentation methodology. This new methodology could contribute to the aim of non-cooperative biometric iris recognition, where the ability to process this type of image is required.
Abstract-This paper focus on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.