Staphylococcus epidermidis is a common commensal of healthy conjunctiva and it can cause endophthalmitis, however its presence in conjunctivitis, keratitis and blepharitis is unknown. Molecular genotyping of S. epidermidis from healthy conjunctiva could provide information about the origin of the strains that infect the eye. In this paper two collections of S. epidermidis were used: one from ocular infection (n = 62), and another from healthy conjunctiva (n = 45). All isolates were genotyped by pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec), detection of the genes icaA, icaD, IS256 and polymorphism type of agr locus. The phenotypic data included biofilm production and antibiotic resistance. The results displayed 61 PFGE types from 107 isolates and they were highly discriminatory. MLST analysis generated a total of 25 STs, of which 11 STs were distributed among the ocular infection isolates and lineage ST2 was the most frequent (48.4%), while 14 STs were present in the healthy conjunctiva isolates and lineage ST5 was the most abundant (24.4%). By means of a principal coordinates analysis (PCoA) and a discriminant analysis (DA) it was found that ocular infection isolates had as discriminant markers agr III or agr II, SCCmec V or SCCmec I, mecA gene, resistance to tobramycin, positive biofilm, and IS256+. In contrast to the healthy conjunctiva isolates, the discriminating markers were agr I, and resistance to chloramphenicol, ciprofloxacin, gatifloxacin and oxacillin. The discriminant biomarkers of ocular infection were examined in healthy conjunctiva isolates, and it was found that 3 healthy conjunctiva isolates [two with ST2 and another with ST9] (3/45, 6.66%) had similar genotypic and phenotypic characteristics to ocular infection isolates, therefore a small population from healthy conjunctiva could cause an ocular infection. These data suggest that the healthy conjunctiva isolates do not, in almost all cases, infect the eye due to their large genotypic and phenotypic difference with the ocular infection isolates.
In ocular infections (OIs) caused by Staphylococcus epidermidis, biofilms composed mainly of poly-N-acetylglucosamine (PNAG) have been widely studied, but PNAG-independent biofilms have not. Therefore, we searched for a relationship between the ica operon (involved in PNAGbiofilm) and the biochemical composition of biofilms in isolates from OI. Isolates from OI (n562), from healthy conjunctiva (HC; n545) and from healthy skin (HS; n553), were used to detect icaA and icaD genes, and the insertion sequence 256 (IS256) using PCR. The compositions of the biofilms were determined by treatment with NaIO 4 , proteinase K and DNase I. Multilocus sequence typing (MLST) was performed to characterize the isolates, and the expression of aap and embp genes was determined by real-time qPCR. A strong relationship between the icaA " / icaD " /IS256 " genotype and protein-or protein/extracellular DNA (eDNA)-biofilm composition was found in the isolates from OI (53.6 %), whereas the icaA + /icaD + /IS256 " genotype and carbohydrate-biofilm was most prevalent in isolates from HC (25 %) and HS (25 %). Isolates with an icaA " /icaD " /IS256 " genotype and protein-biofilm phenotype were predominantly of the ST2 lineage, while carbohydrate-biofilm-producing strains were mainly of the ST9 lineage. The proteinbiofilm-producing strains had higher expression levels of aap gene than carbohydrate-biofilmproducing strains; while embp gene did not have the same pattern of expression. These results suggest that S. epidermidis strains with icaA " /icaD " /IS256 " genotype and protein-or protein/ eDNA-biofilms have a stronger ability to establish in the eye than S. epidermidis strains with icaA + /icaD + /IS256 " genotype and PNAG-biofilms.
Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer’s disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.