Abstract:We study the spectrum of vector mesons in a finite temperature plasma. The plasma is holographically described by a black hole AdS/QCD model. We compute the boundary retarded Green's functions using AdS/CFT prescriptions. The corresponding thermal spectral functions show quasiparticle peaks at low temperatures. Then we calculate the quasinormal modes of vector mesons in the soft-wall black hole geometry and analyse their temperature and momentum dependences.
We investigate effective holographic models for QCD arising from five dimensional Dilaton-Gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry whereas the IR constraint guarantees linear confinement. We propose semi-analytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to zero. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.
Hydrodynamics is nowadays understood as an effective field theory that describes the dynamics of the long-wavelength and slow-time fluctuations of an underlying microscopic theory. In this work we extend the relativistic hydrodynamics to third order in the gradient expansion for neutral fluids in a general curved spacetime of d dimensions. We find 58 new transport coefficients, 19 due to third-order scalar corrections and 39 due to tensorial corrections. In the particular case of a conformal fluid, the number of new transport coefficients is reduced to 19, all of them due to third-order tensorial corrections. The dispersion relations of linear fluctuations in the third-order relativistic hydrodynamics is obtained, both in the rest frame of the fluid and in a general moving frame. As an application we obtain some of the transport coefficients of a relativistic conformal fluid in three dimensions by using the AdS/CFT correspondence. These transport coefficients are extracted from the dispersion relations of the linear fluctuations. The gravity dual of the fluctuations in this conformal fluid is described by the gravitational perturbations of fourdimensional anti-de Sitter black branes, which are solutions of the Einstein equations with a negative cosmological constant. To find the hydrodynamic quasinormal modes (QNMs) of the scalar sector we use the SUSY quantum mechanics of the gravitational perturbations of four-dimensional black branes. Such a symmetry allows us to find the wavefunction of the scalar (or sound) sector in the hydrodynamic limit directly from the wavefunction of the vector (or shear) sector, which is usually easier to be found because the perturbation wave equations for the vector sector are much simpler than the ones for the scalar sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.