ResumenEn este trabajo se realiza la simulación numérica en 2D del comportamiento hidrodinámico y térmico del flujo gas-sólido en un reactor industrial (riser) con dos salidas colocadas asimétricamente, utilizando un modelo de la Dinámica de Fluidos Computacional. El sistema se considera adiabático y el modelo del sistema se resuelve por una aproximación Euleriana transitoria y la Teoría Cinética del Flujo Granular (KTGF, Kinetic Theory for Granular Flow). Como modelo de arrastre se utiliza la minimización multiescala de la energía (EMMS, Energy Minimization Multi-Scale). Las variables que se analizan son la distribución de densidad, la distribución de velocidades, la distribución del flujo másico, y los perfiles de temperatura de la fase sólida, a varias alturas del riser. Los resultados de este trabajo se comparan con los obtenidos anteriormente para una configuración de salidas simétricas. El modelo predice adecuadamente la presencia de tres zonas de concentración y velocidad de sólidos, así como la formación del patrón de flujo anular esperado en el riser.
Palabras clave: simulación numérica; riser industrial; salidas asimétricas; aproximación Euleriana; modelo de arrastre EMMS
Hydrodynamic and Thermal Behavior of Gas-Solid Flow in an Vertical Pipe Reactor (Riser) of the Fluid Catalytic Cracking Process (FCC) with Two Lateral Asymmetric Outlets AbstractIn this work 2D numerical simulations of gas-solid flow hydrodynamic and thermal behavior in an industrial riser is made using a Computational Fluid Dynamics model. The mixture goes out from the riser through two lateral upper asymmetric outlets. The system is considered to be adiabatic and the system is solved through a transient Eulerian approach and the Kinetic Theory for Granular Flow. The Energy Minimization MultiScale method (EMMS) is used as a drag model. Solid density distribution, velocity distribution, mass flow distribution and temperature profiles measured at several riser heights are analyzed. The results obtained in this work are compared with those previously obtained in a similar system but having two symmetric outlets. The model properly predicts the presence of three solid concentration and velocity zones, as well as the expected core-annular flow pattern in the riser.
*autor a quien debe ser dirigida la correspondencia
ResumenSe realiza un estudio sobre la convección mixta para flujo laminar sobre un conducto horizontal que encierra un escalón. Las ecuaciones de momento y energía se discretizan usando la técnica de los volúmenes finitos. Se utiliza el algoritmo SIMPLE para enlazar los campos de velocidad y presión en el dominio computacional. La influencia de las fuerzas de flotación (Ri=3) sobre los campos de velocidad y de temperaturas, se simulan para un flujo de aire y un número de Reynolds constante (Re=200) y los resultados se comparan con los de flujo a convección forzada (Ri=0). Los resultados mostraron que las zonas de recirculación adyacentes al escalón, se ven reducidas cuando se consideran las fuerzas de flotación. Se concluye que el flujo es altamente tridimensional.
Palabras clave: simulación numérica, convección mixta, convección forzada, algoritmo SIMPLE
Numerical Analysis for a Mixed Convective Flow Over a Tri-Dimensional Horizontal Backward-Facing Step AbstractLaminar mixed convection over a backward-facing step is studied and presented in this work. A finite volume discretization technique is used to solve the momentum and energy equations. The SIMPLE algorithm is used to link the pressure distribution and velocity field inside the computational domain. The buoyancy forces affecting the velocity and temperature distributions are simulated for constant air flow and constant Reynolds number (Re=200) for a mixed convective flow (Ri=3) and the results are compared with those of pure force convective flow (Ri=0). The results indicate that the re-circulation zones at the vicinity of the back step are reduced if the buoyancy effects are considered. It is concluded that the flow is highly tridimensional.
A numerical simulation of a flow passing throw two NACA 0012 airfoils is presented in this paper. Aerodynamics, drag forces, and pressure drop is quantified when both profiles are axially aligned and then when one of them is vertically displaced. NUMECA code and Spalart-Allmaras turbulence model were used for this purpose. The results showed that aerodynamic losses are present in both profiles, meaning that the presence of the back profile plays an important role in the aerodynamic behavior of the frontal profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.