Este artículo presenta los resultados obtenidos del registro, procesamiento, reconocimiento y clasificación de palabras del lenguaje español mediante el análisis de las señales de voz de habla subvocal. El trabajo en conjunto será en un futuro enfocado en aplicaciones de telecomunicaciones como: chat para sordo mudos. La base de datos procesada está conformada por seis palabras (adelante, atrás, derecha, izquierda, iniciar y parar). Las señales fueron sensadas con electrodos superficiales dispuestos en la superficie de la garganta y adquiridas con una frecuencia de muestreo de 50 Khz. El acondicionamiento de las señales consistió en: la ubicación de la zona de interés mediante análisis de energía, y el filtrado usando Transformada Wavelet Discreta. Finalmente, la extracción de características se hizo en el dominio del tiempo-frecuencia empleando Wavelet Packet y técnicas estadísticas por ventaneo. La clasificación se llevó a cabo con una Red Neuronal por Retropropagación cuyo entrenamiento se realizó con el 70% de la base de datos obtenida. El porcentaje de acierto encontrado fue de 75%±2.
Actualmente, las máquinas de soporte vectorial (SVM) se han convertido en una herramienta poderosa para resolver problemas de clasificación no lineal. Para la optimización de esta herramienta, se ha desarrollado una reformulación conocida como LS-SVM (máquina de soporte vectorial de mínimos cuadrados), la cual trabaja con un modelo de minimización basada en funciones y polinomios de Lagrange. Por lo tanto, este trabajo presenta un método para la segmentación de imágenes de resonancia magnética específicamente para estudiar la morfología de los pulmones y lograr la cuantificación de características relevantes en dichas imágenes usando SVM y LS-SVM. Adicionalmente a la técnica de clasificación, en este trabajo se usaron técnicas como: análisis Wavelet para eliminación de información no relevante (compresión), y algoritmos Splines, para interpolar la información encontrada y cuantificar las características, que se basaron en el reconocimiento de área, forma y estructuras anormales presentes en la zona pulmonar de dichas imágenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.