The effects on the small intestine and the growth of rats of six pure plant lectins: PHA (Phaseolus vulgaris); SBL (Glycine maxima); SNA-I and SNA-II (Sambucus nigra); GNA (Galanthus nivalis) and VFL (Viciafaba), covering most sugar specificities found in nature, were studied in vivo. Variable amounts, 25% (VFL) to 100% (PHA, GNA) of the lectins administered intragastrically, remained in immunochemically intact form in the small intestine after 1 h. All lectins, except GNA, showed binding to the brush border on first exposure, although this was slight with VFL. Thus, binding to the gut wall was not obligatory for resistance to proteolysis. Exposure of rats to lectins, except VFL, for 10 days, retarded their growth but induced hyperplastic growth of their small intestine. The two activities were directly related. PHA and SNA-II, whose intestinal binding and endocytosis was appreciable after 10 days of feeding the rats with diets containing these lectins and similar to that found on acute (1 h) exposure, were powerful growth factors for the small intestine. GNA, which did not bind at the start but was reactive after 10 days, and SNA-I, which behaved in the opposite way, induced changes in receptor expression in the gut. As they were bound to the brush border transiently, they were less effective growth factors. VFL was not bound or endocytosed, was non-toxic and did not promote gut growth.
Lactate can be produced by many gut bacteria, but in adults its accumulation in the colon is often an indicator of microbiota perturbation. Using continuous culture anaerobic fermentor systems, we found that lactate concentrations remained low in communities of human colonic bacteria maintained at pH 6.5, even when dl-lactate was infused at 10 or 20 mM. In contrast, lower pH (5.5) led to periodic lactate accumulation following lactate infusion in three fecal microbial communities examined. Lactate accumulation was concomitant with greatly reduced butyrate and propionate production and major shifts in microbiota composition, with Bacteroidetes and anaerobic Firmicutes being replaced by Actinobacteria, lactobacilli, and Proteobacteria. Pure-culture experiments confirmed that Bacteroides and Firmicutes isolates were susceptible to growth inhibition by relevant concentrations of lactate and acetate, whereas the lactate-producer Bifidobacterium adolescentis was resistant. To investigate system behavior further, we used a mathematical model (microPop) based on 10 microbial functional groups. By incorporating differential growth inhibition, our model reproduced the chaotic behavior of the system, including the potential for lactate infusion both to promote and to rescue the perturbed system. The modeling revealed that system behavior is critically dependent on the proportion of the community able to convert lactate into butyrate or propionate. Communities with low numbers of lactate-utilizing bacteria are inherently less stable and more prone to lactate-induced perturbations. These findings can help us to understand the consequences of interindividual microbiota variation for dietary responses and microbiota changes associated with disease states.
IMPORTANCE Lactate is formed by many species of colonic bacteria, and can accumulate to high levels in the colons of inflammatory bowel disease subjects. Conversely, in healthy colons lactate is metabolized by lactate-utilizing species to the short-chain fatty acids butyrate and propionate, which are beneficial for the host. Here, we investigated the impact of continuous lactate infusions (up to 20 mM) at two pH values (6.5 and 5.5) on human colonic microbiota responsiveness and metabolic outputs. At pH 5.5 in particular, lactate tended to accumulate in tandem with decreases in butyrate and propionate and with corresponding changes in microbial composition. Moreover, microbial communities with low numbers of lactate-utilizing bacteria were inherently less stable and therefore more prone to lactate-induced perturbations. These investigations provide clear evidence of the important role these lactate utilizers may play in health maintenance. These should therefore be considered as potential new therapeutic probiotics to combat microbiota perturbations.
Dietary MRP are able to modulate in vivo the intestinal microbiota composition both in humans and in rats, and the specific effects are likely to be linked to the chemical structure and dietary amounts of the different browning compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.