This study combines geochemical and geochronological data in order to decipher the provenance of Carboniferous turbidites from the South Portuguese Zone (SW Iberia). Major and trace elements of 25 samples of graywackes and mudstones from the Mértola (Visean), Mira (Serpukhovian), and Brejeira (Moscovian) Formations were analyzed, and 363 U-Pb ages were obtained on detrital zircons from five samples of graywackes from the Mira and Brejeira Formations using LA-ICPMS. The results indicate that turbiditic sedimentation during the Carboniferous was marked by variability in the sources,
In Armação de Pêra Bay, southern Portugal, environmental changes during the Holocene can be interpreted based on the morphological and sedimentological similarities between older geomorphic features (cemented beach and dune rocks) and present coastal features. Using knowledge of the present beach and dune processes, we propose a two-step model for the evolution of Armação de Pêra Bay. First, during the rapid sea level rise between about 8 800 and 6 600 yr cal BP, the bay changed from a positive to a negative budget littoral cell and transgressive dunes formed, favoured by drought conditions. At about 5 000 yr cal BP, during a sea level maximum, beach width was less than the critical fetch and dunes stabilized and underwent cementation during the wetter Atlantic climatic event. The second phase of dune accumulation started at about 3 200 yr cal BP, due to a regression of sea level during which the bay changed back to a positive budget littoral cell in which beach width was greater than the critical fetch. Currently, the beach width is less than the critical fetch, dunes are inactive, and the sedimentary budget is negative due to sediment storage in local river systems.
Pliocene-Pleistocene sand of the Alvalade basin was taken from the sea-cliffs of SW Iberia coast for a provenance study using radiometric dating. The U-Pb ages obtained revealed a wide interval ranging from Cretaceous to Archean, with predominance of Paleozoic, Neoproterozoic and Cretaceous zircon ages. Cretaceous ages interpreted to indicate a Sines Massif provenance are dominant in sands close to Cape Sines but are absent in sand sampled 12 km north. Carboniferous ages younger than ca. 315 Ma suggesting a possible contribution from the Central-Iberian Zone originally; however, these zircons may be multi-cyclic, having been reworked from Eocene-Miocene siliciclastic deposits related to transport from central Iberia (Lower Tagus basin drainage evolution). These signatures provide important constraints on the location and extent of the Pliocene-Pleistocene topography and drainage system that were probably controlled by: i) Miocene to Pleistocene landscape rejuvenation driven by Alpine movements along major faults; and ii) residual reliefs related to inherited Variscan structure. The U-Pb ages obtained also trace the pre-Cenozoic paleotectonic evolution of SW Iberia recorded in their sources: i) the North Gondwana accretion and breakup; ii) the Gondwana and Laurussia collision; and iii) the Pangea breakup and opening of the Atlantic Ocean.
Morphological features along the Algarve rocky coast, South Portugal, are identified and described, with an emphasis on shore platforms and notches. The contributions of processes, such as wave attack, chemical weathering and bioerosion, to sculpting the shore platforms are discussed. The preferential localization of shore platforms on sites exposed to waves, and the lack of significant chemical weathering, point to wave erosion as the first-order factor in platform formation, whilst bioerosion/bioprotection, lithology and geological structure determine platform morphological variations. In addition, platforms above the present intertidal zone appear to have a polygenetic evolution, being inherited from former sea-level highstands and currently undergoing chemical weathering. The occurrence of notch features is independent of the degree of exposure to waves, but they mostly occur where the substratum is sand. Hydrostatic pressure appears to be an important factor in the formation of marine caves in the more sheltered sites..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.