SUMMARY
This paper presents a novel method for modeling a 3-degree of freedom open kinematic chain using quaternions algebra and neural network to solve the inverse kinematic problem. The structure of the network was composed of 3 hidden layers with 25 neurons per layer and 1 output layer. The network was trained using the Bayesian regularization backpropagation. The inverse kinematic problem was modeled as a system of six nonlinear equations and six unknowns. Finally, both models were tested using a straight path to compare the results between the Newton–Raphson method and the network training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.