Eggplant (Solanum melongena L.) is an important solanaceous crop that is produced mainly in tropical and subtropical regions and is widely consumed worldwide. In 2018, eggplant production in Mexico was approximately 80000 t, and Sinaloa State contributed 96% of this production; however, this crop suffers significant losses from plant pathogens. In December 2019, fruits from commercial orchards (geographical coordinates: 24°45'39.39''N, 107°26'57.30''O) with visible brown soft rot and profuse white mycelia were analysed. On V8 medium, pieces of tissue obtained from the border of lesions were plated and incubated between 25°C and 36°C. After five days, a dense cottony mycelium with a slightly petaloid pattern was observed at 25°C and did not grow at 36°C. Isolates of that pathogen were heterothallic, and microscopic preparations showed development of coenocytic mycelium and spheroid sporangia that were noncaducous and papillate, measuring 35.6 ± 5.8 x 27.1 ± 4.4. Based on morphological characteristics, the eggplant soft rot causal agent was identified as Phytophthora nicotianae Breda de Haan (Erwin and Ribeiro, 1996). From a representative isolate denominated PhySm01, two DNA regions (internal transcribed spacer (ITS) and the large subunit ribosomal (28S)) were amplified and sequenced with ITS1-ITS4 and NL1-LR3 primers, respectively. The obtained ITS sequence (GenBank accession number MT508842) showed 100% identity with several P. nicotianae sequences (Access MT065840, MH290435 and MG570057) with 100% query coverage and 740 matching nucleotides. For the 28S sequence (accession number MT508843), the identity with strains N° Access EU080889 and EU080508 of P. nicotianae was 99.86%, with 100 query coverage and 729 matching nucleotides. Further, phylogenetic analysis from P. nicotianae strain PhySm01 and GenBank reference sequences was carried out by Maximum Likelihood method with Mega 7 software based on the ITS sequences, which verified the species identification. To fulfill Koch’s postulates, a suspension containing 1 x 104 zoospores/mL of the oomycete isolated from the original diseased eggplant fruit was used to inoculate ten healthy and disinfested fruits. Sterile water was used as a control. Three wounds per fruit were made with a sterile needle, and 20 μL of the zoospore suspension (or water) was placed on each. All fruits were placed into plastic bags with moistened paper and incubated at 25°C for three days. Thisest was repeated twice with similar results. Initial symptoms developed 24 hours after inoculation with brown soft tissue forming around the inoculated area, and profuse soft rot accompanied by white mycelium was observed two days after inoculation. No symptoms developed on the control fruits during this time. Pieces of necrotic tissue were plated on V8 medium and incubated as described previously. The reisolated pathogen was compared to the original isolate and had the same morphological characteristics. Phytophthora nicotianae has a worldwide distribution and can infect multiple solanaceous crops, including tobacco (Gallup et al., 2018). In addition, it has been reported on other hosts outside of the Solanaceae family, causing economically important losses in citrus and strawberry. In India, it causes necrosis of citrus fruits and roots, leading to tree decline (Das et al., 2016), and in the United States, it causes crown rot of strawberry (Marin et al., 2018). In Mexico, P. nicotianae has been reported on vinca (Alvarez-Rodriguez et al., 2013); however, this is the first report of P. nicotianae causing fruit soft rot of eggplant, and this pathogen represents a new threat when the environment is favourable for disease outbreaks. References Alvarez-Rodriguez, B. et al. 2013. Plant Dis. 97: 1257. https://doi.org/10.1094/PDIS-04-13-0400-PDN Das, A. K. et al. 2016. J. Plant Pathol. 98: 55. DOI: 10.4454/JPP.V98I1.038 Erwin, D. C. and Ribeiro, O. K. 1996. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN. 562 Pp. Gallup, C. A. et al. 2018. Plan Dis. 102: 1108. https://doi.org/10.1094/PDIS-02-17-0295-RE Marin, M. V. et al. 2018. Plant Dis. 102:1463. https://doi.org/10.1094/PDIS-08-17-1333-PDN.
Extraction of eggs of Meloidogyne spp. in sodium hypochlorite (NaOCl) is a helpful procedure to assess the population levels and to obtain inoculum. In this sense, laboratory and greenhouse experiments were done to evaluate the effect of the NaOCl concentration on the viability of M. enterolobii eggs. Additionally, the objective of this investigation was to corroborate the preferable treatments to count populations in cucumber galled roots or to obtain inoculum of M. enterolobii. It was shown that the effect of the NaOCl concentration on the viability of M. enterolobii eggs is potentially detrimental. The NaOCl concentration caused a higher hatching, which in turn, resulted in non-infective larvae. Therefore, the best treatments to obtain inoculum of eggs of M. enterolobii included the 0.75% NaOCl (with 8-min stirring), 0.5% NaOCl (with stirring for 8, 12, and 16 min), and 0.3% NaOCl concentration (with stirring for 8, 12, 16, and 20 min). For a correct estimate of the egg population in roots, we show by several treatments that a concentration of 0.5% NaOCl (with stirring for 8, 12, and 16 min) and 0.75% NaOCl (with 8-min stirring) give the highest results.
Watermelon is an important vegetable crop in Mexico and produced on 358,105 ha, with nearly 1.5 x 106 tons. In September 2019, brown, irregular shape to round lesions with concentric rings were observed on the leaves and stems of watermelon plants in Sonora State. The surface of the lesions contained abundant cup-shaped sporodochia covered by masses of olive-green to black conidia. Edge sections of symptomatic tissues were cut from the leaves, disinfected in 70% ethanol for 1 min and subsequently washed twice with distilled water. Disinfected tissue samples were transferred to PDA medium and incubated at 27°C for 15 days. White colonies were observed with spordochia arranged in concentric rings with characteristic of greenish-black masses of conidia. Spore masses stained with lactophenol blue were examined microscopically. Conidia were nonseptate and rod-shaped with rounded ends that measured 6.65 ± 0.54 x 1.56 ± 0.25 μm (n = 100). The characteristics of the fungus were similar to those reported for Paramyrothecium foliicola (Rennberger and Keinath, 2020). Molecular identification was performed on a representative isolate. RNA polymerase II second largest subunit (RPB2), calmodulin (CmdA) and the β-tubulin (B-tub) genes were amplified and sequenced with the primer sets RPB2-5F2-RPB2-7cR, CAL228F-CAL737R and Bt2a-Bt2b, respectively. These sequences were submitted to GenBank with the acc. nos. MW116070 for RPB2, MW116071 for CmdA and MW116072 for B-tub. BLASTn analysis of the sequences demonstrated 99.34 to 100% identity with Paramyrothecium foliicola (acc. nos. MN398043, MN593713 and MN398138). Koch’s postulates were verified on 15-day-old watermelon seedlings and mature fruit. One point of each of ten watermelon seedlings and six points of each of five fruit were marked for inoculation. A plug of mycelium obtained from a monosporic pure culture (grown for 15 days in PDA) was applied to each point without wounds. PDA only medium was included as the controls. The pathogenicity tests were repeated twice. Treated seedlings and fruit were kept in plastic bags at 27°C for 15 days. The first symptoms appeared 4 days after inoculation on the seedlings and 3 days after inoculation on the fruit. At the end of the test, the symptoms were similar to those observed initially in the field. The pathogen was re-isolated from lesion edges, and the morphological characteristics of the pathogen were determined to correspond with those of the inoculated fungus. Control seedlings and fruits remained healthy. P. foliicola has been reported to cause leaf spot disease on wild rocket and basil (Matić et al., 2019) and, recently, on watermelon in South Carolina (Rennberger and Keinath, 2020). To the best of our knowledge, this report is the first to describe P. foliicola causing leaf spot and stem canker on watermelon in Mexico.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.