Today, the workflows that are involved in industrial assembly and production activities are becoming increasingly complex. To efficiently and safely perform these workflows is demanding on the workers, in particular when it comes to infrequent or repetitive tasks. This burden on the workers can be eased by introducing smart assistance systems. This article presents a scalable concept and an integrated system demonstrator designed for this purpose. The basic idea is to learn workflows from observing multiple expert operators and then transfer the learnt workflow models to novice users. Being entirely learning-based, the proposed system can be applied to various tasks and domains. The above idea has been realized in a prototype, which combines components pushing the state of the art of hardware and software designed with interoperability in mind. The emphasis of this article is on the algorithms developed for the prototype: 1) fusion of inertial and visual sensor information from an on-body sensor network (BSN) to robustly track the user’s pose in magnetically polluted environments; 2) learning-based computer vision algorithms to map the workspace, localize the sensor with respect to the workspace and capture objects, even as they are carried; 3) domain-independent and robust workflow recovery and monitoring algorithms based on spatiotemporal pairwise relations deduced from object and user movement with respect to the scene; and 4) context-sensitive augmented reality (AR) user feedback using a head-mounted display (HMD). A distinguishing key feature of the developed algorithms is that they all operate solely on data from the on-body sensor network and that no external instrumentation is needed. The feasibility of the chosen approach for the complete action-perception-feedback loop is demonstrated on three increasingly complex datasets representing manual industrial tasks. These limited size datasets indicate and highlight the potential of the chosen technology as a combined entity as well as point out limitations of the system.
Abstract-Nowadays, an increasing need of intervention robotic systems can be observed in all kind of hazardous environments. In all these intervention systems, the human expert continues playing a central role from the decision-making point of view. For instance, in underwater domains, when manipulation capabilities are required, only Remote Operated Vehicles, commercially available, can be used, normally using master-slave architectures and relaying all the responsibility in the pilot. Thus, the role played by human-machine interfaces represents a crucial point in current intervention systems. This paper presents a User Interface Abstraction Layer and introduces a new procedure to control an underwater robot vehicle by using a new intuitive and immersive interface, which will show to the user only the most relevant information about the current mission. We conducted an experiment and found that the highest user preference and performance was in the immersive condition with joystick navigation.
Telepresence robots are becoming popular in social interactions involving health care, elderly assistance, guidance, or office meetings. There are two types of human psychological experiences to consider in robot-mediated interactions: (1) telepresence, in which a user develops a sense of being present near the remote interlocutor, and (2) co-presence, in which a user perceives the other person as being present locally with him or her. This work presents a literature review on developments supporting robotic social interactions, contributing to improving the sense of presence and co-presence via robot mediation. This survey aims to define social presence, co-presence, identify autonomous “user-adaptive systems” for social robots, and propose a taxonomy for “co-presence” mechanisms. It presents an overview of social robotics systems, applications areas, and technical methods and provides directions for telepresence and co-presence robot design given the actual and future challenges. Finally, we suggest evaluation guidelines for these systems, having as reference face-to-face interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.