Engineering conducting polymer thin films with morphological homogeneity and long-range molecular ordering is intriguing to achieve high-performance organic electronics. Polyaniline (PANI) has attracted considerable interest due to its appealing electrical conductivity and diverse chemistry. However, the synthesis of large-area PANI thin film and the control of its crystallinity and thickness remain challenging because of the complex intermolecular interactions of aniline oligomers. Here we report a facile route combining air-water interface and surfactant monolayer as templates to synthesize crystalline quasi-two-dimensional (q2D) PANI with lateral size ~50 cm2 and tunable thickness (2.6–30 nm). The achieved q2D PANI exhibits anisotropic charge transport and a lateral conductivity up to 160 S cm−1 doped by hydrogen chloride (HCl). Moreover, the q2D PANI displays superior chemiresistive sensing toward ammonia (30 ppb), and volatile organic compounds (10 ppm). Our work highlights the q2D PANI as promising electroactive materials for thin-film organic electronics.
Fabrication and comparative analysis of the gas sensing devices based on individualized single-walled carbon nanotubes of four different types (pristine, boron doped, nitrogen doped, and semiconducting ones) for detection of low concentrations of ammonia is presented. The comparison of the detection performance of different devices, in terms of resistance change under exposure to ammonia at low concentrations combined with the detailed analysis of chemical bonding of dopant atoms to nanotube walls sheds light on the interaction of NH with carbon nanotubes. Furthermore, chemoresistive measurements showed that the use of semiconducting nanotubes as conducting channels leads to the highest sensitivity of devices compared to the other materials. Electrical characterization and analysis of the structure of fabricated devices showed a close relation between amount and quality of the distribution of deposited nanotubes and their sensing properties. All measurements were performed at room temperature, and the power consumption of gas sensing devices was as low as 0.6 μW. Finally, the route toward an optimal fabrication of nanotube-based sensors for the reliable, energy-efficient sub-ppm ammonia detection is proposed, which matches the pave of advent of future applications.
We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors’ electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.