This article designs a high-efficiency electric propulsion system for industrial trucks, such as dumper trucks. This design proposes using an alternative energy storage system of green H<sub>2</sub> hydrogen to reduce emissions. This design determines the propulsion systems' technical and power requirements, starting with each vehicle's driving and duty cycles. For this analysis, a longitudinal dynamic model is created, with which the behavior of the energy conversion chain of the propulsion system is established. The evolutionary methodology analyzes the dynamic forces of vehicle interaction to size the propulsion system's components and the storage system. Using green H<sub>2</sub> as fuel allows an energy yield three times higher than diesel. In addition, using this green hydrogen prevents the emission of 264,172 kg of CO₂, which the dumper emits when consuming 1,000 daily gallons of diesel within its working day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.