The intestinal tract houses one of the richest and most complex microbial populations on the planet, and plays a critical role in health and a wide range of diseases. Limited studies using new sequencing technologies in horses are available. The objective of this study was to characterize the fecal microbiome of healthy horses and to compare the fecal microbiome of healthy horses to that of horses with undifferentiated colitis. A total of 195,748 sequences obtained from 6 healthy horses and 10 horses affected by undifferentiated colitis were analyzed. Firmicutes predominated (68%) among healthy horses followed by Bacteroidetes (14%) and Proteobacteria (10%). In contrast, Bacteroidetes (40%) was the most abundant phylum among horses with colitis, followed by Firmicutes (30%) and Proteobacteria (18%). Healthy horses had a significantly higher relative abundance of Actinobacteria and Spirochaetes while horses with colitis had significantly more Fusobacteria. Members of the Clostridia class were more abundant in healthy horses. Members of the Lachnospiraceae family were the most frequently shared among healthy individuals. The species richness reported here indicates the complexity of the equine intestinal microbiome. The predominance of Clostridia demonstrates the importance of this group of bacteria in healthy horses. The marked differences in the microbiome between healthy horses and horses with colitis indicate that colitis may be a disease of gut dysbiosis, rather than one that occurs simply through overgrowth of an individual pathogen.
C. difficile, including epidemic PCR ribotypes 017 and 027, were isolated from dairy calves in Canada.
BackgroundThe intestinal tract is a rich and complex environment and its microbiota has been shown to have an important role in health and disease in the host. Several factors can cause disruption of the normal intestinal microbiota, including antimicrobial therapy, which is an important cause of diarrhea in horses. This study aimed to characterize changes in the fecal bacterial populations of healthy horses associated with the administration of frequently used antimicrobial drugs.ResultsTwenty-four adult mares were assigned to receive procaine penicillin intramuscularly (IM), ceftiofur sodium IM, trimethoprim sulfadiazine (TMS) orally or to a control group. Treatment was given for 5 consecutive days and fecal samples were collected before drug administration (Day 1), at the end of treatment (Days 5), and on Days 14 and 30 of the trial. High throughput sequencing of the V4 region of the 16S rRNA gene was performed using an Illumina MiSeq sequencer. Significant changes of population structure and community membership were observed after the use of all drugs. TMS caused the most marked changes on fecal microbiota even at higher taxonomic levels including a significant decrease of richness and diversity. Those changes were mainly due to a drastic decrease of Verrucomicrobia, specifically the “5 genus incertae sedis”. Changes in structure and membership caused by antimicrobial administration were specific for each drug and may be predictable. Twenty-five days after the end of treatment, bacterial profiles were more similar to pre-treatment patterns indicating a recovery from changes caused by antimicrobial administration, but differences were still evident, especially regarding community membership.ConclusionsThe use of systemic antimicrobials leads to changes in the intestinal microbiota, with different and specific responses to different antimicrobials. All antimicrobials tested here had some impact on the microbiota, but TMS significantly reduced bacterial species richness and diversity and had the greatest apparent impact on population structure, specifically targeting members of the Verrucomicrobia phylum.Electronic supplementary materialThe online version of this article (doi:10.1186/s12917-015-0335-7) contains supplementary material, which is available to authorized users.
BackgroundNeonatal diarrhea accounts for more than 50% of total deaths in dairy calves. Few population‐based studies of cattle have investigated how the microbiota is impacted during diarrhea.ObjectivesTo characterize the fecal microbiota and predict the functional potential of the microbial communities in healthy and diarrheic calves.MethodsFifteen diarrheic calves between the ages of 1 and 30 days and 15 age‐matched healthy control calves were enrolled from 2 dairy farms. The Illumina MiSeq sequencer was used for high‐throughput sequencing of the V4 region of the 16S rRNA gene (Illumina, San Diego, CA).ResultsSignificant differences in community membership and structure were identified among healthy calves from different farms. Differences in community membership and structure also were identified between healthy and diarrheic calves within each farm. Based on linear discriminant analysis effect size (LEfSe), the genera Bifidobacterium, Megamonas, and a genus of the family Bifidobacteriaceae were associated with health at farm 1, whereas Lachnospiraceae incertae sedis, Dietzia and an unclassified genus of the family Veillonellaceae were significantly associated with health at farm 2. The Phylogenetic Investigation of Communities Reconstruction of Unobserved States (PICRUSt) analysis indicated that diarrheic calves had decreased abundances of genes responsible for metabolism of various vitamins, amino acids, and carbohydrate.Clinical RelevanceThe fecal microbiota of healthy dairy calves appeared to be farm specific as were the changes observed during diarrhea. The differences in microbiota structure and membership between healthy and diarrheic calves suggest that dysbiosis can occur in diarrheic calves and it is associated with changes in predictive metagenomic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.