Pseudomonas entomophila is an entomopathogenic bacterium that is able to infect and kill Drosophila melanogaster upon ingestion. Its genome sequence suggests that it is a versatile soil bacterium closely related to Pseudomonas putida. The GacS/GacA two-component system plays a key role in P. entomophila pathogenicity, controlling many putative virulence factors and AprA, a secreted protease important to escape the fly immune response. P. entomophila secretes a strong diffusible hemolytic activity. Here, we showed that this activity is linked to the production of a new cyclic lipopeptide containing 14 amino acids and a 3-C 10 OH fatty acid that we called entolysin. Three nonribosomal peptide synthetases (EtlA, EtlB, EtlC) were identified as responsible for entolysin biosynthesis. Two additional components (EtlR, MacAB) are necessary for its production and secretion. The P. entomophila GacS/GacA two-component system regulates entolysin production, and we demonstrated that its functioning requires two small RNAs and two RsmA-like proteins. Finally, entolysin is required for swarming motility, as described for other lipopeptides, but it does not participate in the virulence of P. entomophila for Drosophila. While investigating the physiological role of entolysin, we also uncovered new phenotypes associated with P. entomophila, including strong biocontrol abilities.
a b s t r a c tThe levels of sulfate-reducing bacteria (SRB), including Desulfovibrionaceae, in the gut increase following a fat-enriched diet. Endotoxins from gut microbiota contribute to the inflammation process, leading to metabolic diseases. Thus, we sought to characterize the lipid A structures of Desulfovibrionaceae lipopolysaccharides (LPS) that are associated with the microbiota inflammatory properties. LPS variants were obtained from two SRB isolates from the gut of a single individual. These LPS variants shared similar lipid A moieties with Enterobacterial LPS, but differed from one another with regard to fatty-acid numbers and endotoxic activity. This first complete structural characterization of Desulfovibrio lipid A gives new insights into previously published data on Desulfovibrio lipid A biosynthesis. LPS microdiversity within SRBs illustrates how adaptation can influence pro-inflammatory potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.