This study aimed to evaluate the effect of variations in organic load (hydraulic retention times -HRTs: from 2 to 0.5 day) and in alkalinity (NaHCO3 from 4,000 to 1,000 mg.L -1 ) on methane production. Biomass of sewage sludge was inoculated and stabilized on 1" polypropylene rings. The rings were immersed in the liquid phase (8.41 L) of an upflow anaerobic filter reactor (12.22 L). A solution of 5 g of whole milk powder per liter was used to simulate effluent from the dairy industry. Process effectiveness was measured by chemical oxygen demand reduction, biogas production, and biogas methane content. Biogas production started at a 2-day HRT and synthetic effluent alkalinization with 4,000 mg.L -1 NaHCO3. The best operation condition was at 1-day HRT and with the addition of 4,000 mg.L -1 NaHCO3. Biogas production reached 1.5 NL of biogas per L of reactor liquid phase, with 68% of methane and a concomitant reduction in COD of 57%.
<p>Nature-based Solutions (NbS), inspired or supported by nature, aim to address societal challenges in a fast-changing environment via an integrated and sustainable approach. Effective implementation of such intervention certainly requires compliance with specific societal configurations in different geographies. Here two cases of NbS to hydrological disaster risks are used to demonstrate the relevance of social barriers and opportunities for the full function of NbS.</p><p>Firstly, we introduce a novel large-scale NbS designed for reducing water scarcity in the Bolivian city of Santa Cruz de la Sierra. In this case, strategic reforestation was planned to bring rainfall to a downwind city taking advantage of atmospheric moisture pathways. In the process of co-designing reforestation sites, experiences from failed reforestation projects have improved the site selection originally based solely on the scientific evidence of the moisture pathways. Social barriers to implementation include underground economic activities and pressures for local food production. The latter factor also implies a trade-off between the fulfilments of different sustainable development goals.</p><p>Secondly, a case of landscape-scale NbS that aims to mitigate flood risk from typhoons in Taiwan will be discussed. It consists of a flood diversion framework that directs excess runoff to local farmlands following Typhoon storms. The concept of payment for ecosystem services has been employed to increase the willingness of farmers and landowners to participate in this framework. Institution of compensation for agricultural loss established from previous meteorological disasters has paved the way for implementation. A combination of subsidies and agricultural loss compensation has offered an opportunity for the new intervention to take place in the rice-cropping landscape, while the effect of this ongoing framework will be further documented.</p><p>These two cases show that the inertia from existing policy/institutional schemes and the lessons from past unsuccessful experiences provide an opportunity to identify and overcome social barriers to the implementation of innovative NbS.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.